首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2644篇
  免费   71篇
  国内免费   73篇
测绘学   78篇
大气科学   392篇
地球物理   615篇
地质学   665篇
海洋学   684篇
天文学   193篇
综合类   45篇
自然地理   116篇
  2023年   5篇
  2022年   25篇
  2021年   40篇
  2020年   48篇
  2019年   54篇
  2018年   127篇
  2017年   117篇
  2016年   162篇
  2015年   88篇
  2014年   172篇
  2013年   231篇
  2012年   120篇
  2011年   156篇
  2010年   160篇
  2009年   162篇
  2008年   152篇
  2007年   144篇
  2006年   120篇
  2005年   115篇
  2004年   117篇
  2003年   75篇
  2002年   60篇
  2001年   55篇
  2000年   39篇
  1999年   34篇
  1998年   26篇
  1997年   19篇
  1996年   13篇
  1995年   13篇
  1994年   8篇
  1993年   10篇
  1992年   10篇
  1991年   11篇
  1990年   11篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   13篇
  1984年   5篇
  1983年   4篇
  1982年   11篇
  1981年   2篇
  1980年   8篇
  1979年   4篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
排序方式: 共有2788条查询结果,搜索用时 15 毫秒
301.
Emissions of biogenic volatile organic compounds (BVOCs) from mechanical wounding of leaves and branches of plants can contribute to the atmospheric burden of volatile organic compounds (VOCs) in both (a) urban airsheds (from urban garden maintenance) and (b) the global atmosphere (from large scale forest harvesting). These emissions of BVOCs are poorly understood and quantified, and their role in urban and global emissions inventories neglected. This paper presents measurements of the magnitude, duration and composition of emissions of BVOCs, carbon dioxide (CO2) and methane (CH4) from freshly cut leaf mulch and wood chips derived from a common eucalypt tree, Eucalyptus sideroxylon (red ironbark), found in southeastern Australian forests and gardens. The emissions of BVOCs from freshly cut and shredded leaves and wood of E. sideroxylon were found to be 2.3 ± 0.6 and 0.05 ± 0.04 mg g-1 DM (Dry Mass) from leaf mulch and wood chips respectively and to last typically for 1 day following cutting. Three sampling techniques were used for VOC speciation and the 12 most abundant BVOCs released from the mulch materials were identified. The specific BVOCs emitted in order of decreasing abundance from leaf mulch are: (a) stored plant oils, 1,8-cineole, α–pinene and o-cymene which make up the major part of the emissions, (b) a minor contribution from chemicals associated with environmental stress and wound defence, (Z)–3–hexenyl acetate, (E)-2-hexenal and (Z)-3-hexen-1-ol, and (c) a second minor contribution from metabolic products, acetaldehyde and acetone. The observed integrated emissions of BVOCs from leaves following mulching are equivalent to more than half and perhaps all of the likely stored plant oils in the leaves. For the two comparable studies available, one of a plant with stored oils (this study) and one of a plant without stored plant oils, the emissions of leaf wound defence BVOCs are in the same range for both plants. In the plant with stored plant oils, the plant oil emissions are about a factor of 11 larger in emission rate than the plant wound defence BVOCs. A compilation of available leaf wounding BVOC emission studies indicates that for plants with stored plant oils, plant oil emissions dominate, whereas with other plants, leaf wound defence BVOCs dominate the emissions.  相似文献   
302.
In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Ni?o/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850?hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25°N?C30°N and the westerly anomalies south of 15°N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30°N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150°E?C180° near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to AO-circulation is supported by the numerical simulations of an ocean model, and the anomalous atmospheric circulation over the western North Pacific is also reproduced by the dedicated numerical simulations using the coupled atmosphere?Cocean model. The observation evidence and numerical simulations suggest the spring AO can impact the EASM via triggering tropical air-sea feedback over the western North Pacific.  相似文献   
303.
Structures of adjoint sensitivities to potential vorticity for specific initial and final norm are investigated for a short-range cyclone forecast in a three-dimensional quasigeostrophic (QG) model. Moreover, adjoint sensitivities to potential vorticity are compared with nonlinear sensitivities calculated for the same cyclogenesis case in the QG model. The adjoint sensitivities using different initial and final norms (e.g., total QG disturbance energy and potential enstrophy) show approximately similar characteristics for the horizontal and vertical structures and evolutions. Consistent with previous studies, the horizontal structure of the adjoint sensitivity is smaller for the energy norm than for the potential enstrophy norm. The dynamical mechanism of cyclone development by adjoint sensitivity coincides with that of nonlinear sensitivity, with slight differences in the region of sensitivity maxima over the upstream (nascent) low for the adjoint (nonlinear) sensitivity. The adjoint sensitivities show different vertical distributions from the nonlinear sensitivities. Consistent with the sensitive regions denoted by singular vectors and error evolution in the QG model, maxima of the adjoint sensitivities are located at both the upper and lower boundaries, with prominent secondary peaks in the lower to mid-troposphere of the domain. The level of the secondary maxima changes depending on the initial and final norm used. The secondary peak is located in the lower to mid- (mid-) troposphere for the total QG disturbance energy (potential enstrophy) as the initial and final norm. Based on the correspondence in the level of the sensitivity maxima in the interior of the domain between the adjoint and nonlinear sensitivities, adjoint sensitivities may serve as an alternative to nonlinear sensitivities given the enormous computing expenses in nonlinear sensitivity calculation.  相似文献   
304.
This study examines the tropical storms simulated in the Modern-Era Retrospective analysis for Research and Applications (MERRA) global atmospheric reanalysis for the recent 12 years (1998–2009), focusing on the tropical storm activity over the Northwestern Pacific. For validation, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset is used as an observational counterpart. Climatological-mean features of the tropical storm genesis, tracks and their maximum intensity are the primary interests in this study. Regarding the genesis location of tropical storms, MERRA is reasonable in resolving major development regions over the South China Sea and the Northwestern Pacific close to the Philippines. The seasonal variation of the number of storms is also reproduced in a realistic way in MERRA, with peak values occurring from July to September. In addition, MERRA tends to reproduce the observed interannual variation of the number of tropical storms during the 12-years, though with a limited accuracy. The simulated paths toward higher latitudes are also reasonable in MERRA, where the reanalysis corresponds well with the observations in resolving frequent paths of westward moving storms and recurving storms toward the northeast. Regarding the intensity, MERRA captures the linear relationship between the minimum center pressure and the maximum wind speed near the surface at the maximum development. Some discrepancies from the observed features are found in the reanalysis, such as less frequent development of storms over the South China Sea and less frequent paths over this region. The reanalysis also does not attain the observed maximum intensity for the resolved tropical storms, particularly underestimating the center pressure. These deficiencies are likely related to limitations in the horizontal resolution and the parameterized physics of the data assimilation system.  相似文献   
305.
Three comprehensive acid deposition models were used to simulate the sulfur concentrations over northeast Asia over the period covering entire year of 2002, and discussed the aggregated uncertainties and discrepancies of the three models. The participating models are from the countries participating in the project of Longrange Transboundary Air Pollutants in Northeast Asia (LTP): China, Japan and Korea. The Eulerian Model-3/CMAQ (by China), Regional Air Quality Model (RAQM, by Japan), and Comprehensive Acid Deposition Model (CADM, by Korea) were employed by each country with common emissions data established by the administrative agencies of China, Japan and Korea. The episodic simulation results between 1 to 15, March 2002 are also presented, during which aircraft measurements were carried out over the Yellow sea. The episodic results show both a wide short-term variability in simulations against measurements, and maximum concentration differences of 3~5 times among the three models, requiring that further attention before confidence among the three models can be claimed for short-term simulations. However, the year-long cumulative simulations showed almost the same general features, with lower aggregated uncertainties between the three models, produced by the long term integration over northeast Asia.  相似文献   
306.
In this study, using the Bjerknes stability (BJ) index analysis, we estimate the overall linear El Niño-Southern Oscillation (ENSO) stability and the relative contribution of positive feedbacks and damping processes to the stability in historical simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. When compared with CMIP3 models, the ENSO amplitudes and the ENSO stability as estimated by the BJ index in the CMIP5 models are more converged around the observed, estimated from the atmosphere and ocean reanalysis data sets. The reduced diversity among models in the simulated ENSO stability can be partly attributed to the reduced spread of the thermocline feedback and Ekman feedback terms among the models. However, a systematic bias persists from CMIP3 to CMIP5. In other words, the majority of the CMIP5 models analyzed in this study still underestimate the zonal advective feedback, thermocline feedback and thermodynamic damping terms, when compared with those estimated from reanalysis. This discrepancy turns out to be related with a cold tongue bias in coupled models that causes a weaker atmospheric thermodynamical response to sea surface temperature changes and a weaker oceanic response (zonal currents and zonal thermocline slope) to wind changes.  相似文献   
307.
We present a comprehensive discussion on what cause high ozone episodes at a suburban photochemical observation site of the Seoul Metropolitan Area (population ~23 million). The observational site, Taehwa Research Forest (TRF), is situated ~30 km from the center of Seoul. In June 2011, we observed two very distinctive ozone periods-high ozone (peak up to 120 ppbv) and low ozone (peak up to 60 ppbv) in the mid and early month, respectively. The trace gas measurement dataset, especially CO and NO X clearly indicate that less anthropogenic influences during the high ozone period. Volatile organic compound (VOC) measurement results show that at the observational site, biogenic VOCs (mostly isoprene) contribute most of chemical reactivity towards OH, although toluene from anthropogenic activities was observed in higher concentrations. Back-trajectory analysis indicates that air-masses from the forest part of Korea Peninsula were dominant influences during the high ozone episode event. On the other hand, Aged air masses from China were the dominant influence during the low ozone episode event. Model calculations conducted using the University of Washington Chemical Mechanism (UWCM) box model, also consistently show that BVOC, especially isoprene photochemistry, can be the significantly contribution to local ozone formation in the given photochemical environments of TRF. These research results strongly suggest that ozone control strategy in the Eastern Asian megacities, mostly situated in surrounding forest areas should be based on the comprehensive scientific understanding in BVOC photochemistry and interplays between anthropogenic and biogenic interactions.  相似文献   
308.
In this study, the global Lorenz atmospheric energy cycle is evaluated using the Modern Era Retrospective analysis for Research and Applications (MERRA) and the National Center for Environmental Prediction and the Department of Energy (NCEP R2) reanalysis datasets over a 30-year period (1979–2008) for the annual, JJA, and DJF means. The energy cycle calculated from the two reanalysis datasets is largely consistent, but the energy cycle determined using the MERRA dataset is more active than that determined from the NCEP R2 dataset. For instance, with regard to the annual mean, the general discrepancy between the energy components in the global integral is about 5 %, whereas the discrepancy between the conversion components is about 16  %, with the exception of C(PM, KM), which has a different sign in the global integrals. The latitude-altitude cross-section indicates that the difference in the energy cycle of the two reanalysis datasets is larger in the southern hemisphere than in the northern hemisphere. The conversion rates of mean available potential energy to mean kinetic energy [C(PM, KM)] and eddy available potential energy to eddy kinetic energy [C(PE, KE)] are also calculated using two formulations (so-called ‘v·grad z’ and ‘ω·α’) for the two reanalysis datasets. The differences in the conversion rate between the two reanalysis datasets for the global integral are not appreciable for the two formulations.  相似文献   
309.
The vertical structure and microphysics of Typhoon Kompasu that caused a lot of damage associated with strong winds and heavy rainfall over the Seoul metropolitan area on 1~2 September 2010 were examined primarily from wind profiler measurements. Four different periods that represent a stratiform, outer rainband, inner rainband, and eyewall region during passage of Typhoon Kompasu from 1200 to 2300 UTC 1 September were selected based on bright band intensities and vertical profiles of radar reflectivities and Doppler velocities. The bright band signatures observed in all of these periods indicated that the structure of Kompasu was basically stratiform in a weakening phase. Maximum rainfall rates up to 50 mm hr?1 at the surface and mean wind speeds greater than 30 m s?1 in the 2–4 km layer were observed in the eyewall region. Unlike the other regions that showed nearly zero vertical air motions or weak downdrafts below a melting layer, a mean updraft of ~1 m s?1 was analyzed only in the eyewall region, which suggests that the updrafts may have enhanced drop growth that led to increasing surface rainfall rates. For each region, the vertical mean characteristics of rainfall parameters retrieved from wind profiler spectra below the melting layer were also examined. The rain properties between the inner and outer rainband were similar although they were apart with a distance of more than 100 km (> 2 hrs in time). The averaged mass-weighted mean diameters within the rainbands were larger than those in the stratiform and eyewall regions. A weaker bright band in the eyewall region suggests the presence of a relatively larger number of rimed particles associated with the updrafts around the melting layer. A stronger bright band was present in the rainbands, which indicates more active aggregation right above the melting layer.  相似文献   
310.
In this study, a negative correlation between the rainfall over North Korea in May and the Arctic Oscillation (AO) in the same month is analyzed. The reasons for rainfall declines in the positive AO phase are as follows: (a) the strengthening of anomalous anticyclone in the Maritime Province of Siberia, (b) the weakening of the subtropical western North Pacific high, and (c) the stabilization across all the atmospheric layers in North Korea. Anomalous anticyclone strengthened in the Maritime Province of Siberia plays a critical role in placing the North Korean region under the influence of anomalous northeasterlies. In addition, the development of the anomalous northeasterlies results in the supply of a large amount of cold and dry air into North Korea. This consequently stabilizes the atmosphere in North Korea. Moreover, the reinforcement of anomalous cold sea surface temperature in the mid-latitude region of East Asia is found to be another reason for the atmospheric stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号