首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   12篇
  国内免费   3篇
测绘学   5篇
大气科学   35篇
地球物理   64篇
地质学   118篇
海洋学   17篇
天文学   51篇
自然地理   14篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   23篇
  2015年   9篇
  2014年   13篇
  2013年   20篇
  2012年   19篇
  2011年   12篇
  2010年   12篇
  2009年   18篇
  2008年   10篇
  2007年   11篇
  2006年   14篇
  2005年   17篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1963年   1篇
  1958年   1篇
  1955年   1篇
  1917年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
1.
2.
In East Africa, the feedback between tectonic uplift, erosional denudation and associated possible climate changes is being studied by a multidisciplinary research group, ‘Riftlink’. The group's focus is the Albertine Rift, the northern part of the western branch of the East African Rift System, and in particular the rising Rwenzori Mountains that stretch along the border of the D.R. Congo and Uganda. Major questions relate to the timing of the formation of the Rwenzori Mountains, and whether the height of these mountains (> 5000 m) relates to rift movements in Neogene times, or represents an old basement block that formed a topographic high long before. Though, at first, research concentrated on the eastern (Ugandan) part of the Albertine Rift and Rwenzori Mountains, it has now moved further to the west to the D.R. Congo. A first field‐campaign, covering the area from northern Lake Edward along the rift shoulder up to the Blue Mountains at Lake Albert, was conducted in summer 2009, in cooperation with the Ruwenzori State University of Butembo. Here, we present a brief overview of the field‐campaign, with impressions gathered on the morphology and geology of the study area.  相似文献   
3.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   
4.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   
5.
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.  相似文献   
6.
Dissociative recombination (DR) of ionospheric O2+ ions is an important source of suprathermal atomic oxygen in the exosphere as previous studies about the Martian upper atmosphere have shown. Because of the weaker gravitational attraction a hot oxygen corona on Mars should be denser than that observed on Venus. Since the most important mechanism for the production of the hot oxygen atoms in the Martian exosphere is DR, we investigated the variability of this production mechanism depending of solar activity. The Japanese Nozomi spacecraft will have the possibility to detect with the neutral mass spectrometer (NMS) for the first time in-situ the theoretically predicted hot oxygen corona on Mars, if the corona number density above the cold background atmosphere is of the order of 10,000 cm−3. Due to a problem in the propulsion system Nozomi failed its planned arrival rendevouzs with Mars in October 1999 and will, therefore, arrive at the red planet not before January 2004. Solar activity will reach its maximum in 2001, so the related production rate of hot oxygen atoms will be in the medium range during the new arrival date of Nozomi. We used the ionospheric profiles from the Viking mission for low solar activity conditions (F10.7≈70) and the Mariner 9 mission with a solar activity of about 120 for medium solar wind activity. The latter is comparable to the level we expect for the Mars arrival of Nozomi. The resulting influence of the hot oxygen corona number density distribution was calculated with a Monte Carlo technique. This technique is used to compute a hot particle density distribution function. We studied the atomic diffusion process in the Martian atmosphere by simulating the collision probability, particle direction and energy loss after collisions by generating random numbers. Compared to previous studies we have improved the Monte Carlo model by using more and smaller altitude steps and more detailed treatment of particles with a temporary downward motion. This has resulted in an increased amount of collisions and a shift to lower energies in the energy spectrum. Our results show that the hot oxygen component should begin to dominate above the cold background atmosphere at an altitude of about 500 km above the Martian surface. The NMS instrument on board of Nozomi should detect the hot oxygen component after its arrival at Mars in January 2004, at an altitude of about 600 km above the Martian surface. Since the solar activity will decrease during the mission the measurements during the first orbits will be the most significant ones. The first in-situ measurements of the hot oxygen number density would be very important for adjusting atmospheric escape models by separating ballistic, satellite and escape trajectories of the hot oxygen atoms, which are significant for studies of the evolution and solar wind interaction of the Martian atmosphere.  相似文献   
7.
Across the nightside of Venus, daily measurements from the PV Orbiter Ion Mass Spectrometer often indicate an ionosphere of relatively abundant concentration, with a composition characteristic of the dayside ionosphere. Such conditions are interspersed by other days on which the ionosphere appears to largely “disappear” down to about 200 km, with ion concentrations at lower heights also much reduced. These characteristics, coupled with observations of strong day to night flows of O+ in the upper ionosphere, support arguments that ion transport from the dayside is important for the maintenance of the nightside ionosphere. Also, U.S. and Soviet observations of nightside energetic electron fluxes have prompted consideration of impact ionization as an additional nightside ion source. The details of the ion and neutral composition at low altitudes on the nightside provide an important input for further analysis of the maintenance process. In the range 140–160 km, strong concentrations of O2+ and NO+ indicate that the ionization peak is at times composed of at least two prominent ion species. Nightside concentrations of O2+ and NO+ as large as 105 and 104/cm3, respectively, appear to require sources in addition to that provided by transport. The most probable sources are considered briefly, and no satisfactory explanation is yet found for the observed NO+ concentrations. Further analysis beyond the scope of this paper is required to resolve this issue.  相似文献   
8.
Abstract– Particles from comet 81P/Wild 2 were captured with silica aerogel during the flyby Stardust mission. A significant part of the collection was damaged during the impact at hypervelocity in the aerogel. In this study, we conducted impact experiments into aerogel of olivine and pyroxene powder using a light‐gas gun in similar conditions as that of the comet Wild 2 particles collection. The shot samples were investigated using transmission electron microscopy to characterize their microstructure. Both olivine and pyroxene samples show evidence of thermal alteration due to friction with the aerogel. All the grains have rounded edges after collection, whereas their shape was angular in the initial shot powder set. This is probably associated with mass loss of particles. The rims of the grains are clearly melted and mixed with aerogel. The core of olivine grains is fairly well preserved, but some grains contain dislocations in glide configuration. We interpret these dislocations as generated by the thermal stresses that have emerged due to the high temperature gradients between the core and the rim of the grains. Most of the pyroxene grains have been fully melted. Their high silica concentration reflects a strong impregnation with melted aerogel. The preferential melting of pyroxene compared with olivine is due to a difference in melting temperatures of 300°. This melting point difference probably induces a bias in the measurements of the ratio olivine/pyroxene in the Wild 2 comet. The proportion of pyroxene was probably higher on Wild 2 than expected from the samples collected into aerogel.  相似文献   
9.
The new Solar telescope GREGOR is designed to observe small‐scale dynamic magnetic structures below a size of 70 km on the Sun with high spectral resolution and polarimetric accuracy. For this purpose, the polarimetric concept of GREGOR is based on a combination of post‐focus polarimeters with pre‐focus equipment for high precision calibration. The Leibniz‐Institute for Astrophysics Potsdam developed the GREGOR calibration unit which is an integral part of the telescope. We give an overview of the function and design of the calibration unit and present the results of extensive testing series done in the Solar Observatory “Einsteinturm” and at GREGOR (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号