首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7616篇
  免费   1179篇
  国内免费   1877篇
测绘学   436篇
大气科学   1944篇
地球物理   1872篇
地质学   3518篇
海洋学   1037篇
天文学   372篇
综合类   708篇
自然地理   785篇
  2024年   28篇
  2023年   112篇
  2022年   310篇
  2021年   347篇
  2020年   282篇
  2019年   347篇
  2018年   367篇
  2017年   321篇
  2016年   425篇
  2015年   353篇
  2014年   428篇
  2013年   454篇
  2012年   349篇
  2011年   378篇
  2010年   349篇
  2009年   415篇
  2008年   332篇
  2007年   307篇
  2006年   277篇
  2005年   280篇
  2004年   210篇
  2003年   235篇
  2002年   205篇
  2001年   222篇
  2000年   279篇
  1999年   420篇
  1998年   323篇
  1997年   323篇
  1996年   321篇
  1995年   277篇
  1994年   227篇
  1993年   204篇
  1992年   163篇
  1991年   137篇
  1990年   114篇
  1989年   116篇
  1988年   101篇
  1987年   57篇
  1986年   61篇
  1985年   44篇
  1984年   39篇
  1983年   20篇
  1982年   20篇
  1981年   24篇
  1980年   18篇
  1979年   11篇
  1978年   8篇
  1976年   6篇
  1973年   7篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
281.
西昌昔格达组物质组成及源区分析   总被引:1,自引:0,他引:1       下载免费PDF全文
西昌昔格达组主要由杂色水平纹层状粘土(岩)及粉细砂(岩)构成,偶夹砂卵石层,以水平层理为主,粉细砂层中偶见交错层理。粘土(岩)的成岩程度高于粉细砂(岩),但后者中含有完全成岩的粉细砂岩条带。粘土(岩)由27%~35%的绿泥石、18%~26%的绢云母、27%~35%的石英和13%~20%的斜长石组成,其Al2O3/SiO2仅为0.15,远低于攀枝花及大渡河富林昔格达组粘土(岩)和一般粘土。粉细砂(岩)的碎屑物主要由石英、长石和岩屑组成,平均含量分别为27%,49%和25%。昔格达组所夹卵石层分选很差,最大卵石粒径6cm,含有昔格达组粘土岩和粉细砂碎块及强风化石英闪长岩和泥质粉砂岩碎块。昔格达组自身及所夹卵石层的矿物及化学成分表明,其物源区以物理风化为主,碎屑物质搬运距离近、堆积迅速,区内有玄武岩、石英闪长岩、花岗岩、流纹岩及斑流岩、石灰岩、砂岩、粉砂岩、泥质粉砂岩及片岩、千枚岩、变砂岩等浅变质岩出露。安宁河流域黄连关以北段不仅具备西昌昔格达组物源区的地质环境特征,而且具有补给西昌昔格达湖盆的物源储备,昔格达组自身及所夹卵石层中已经识别出的矿物碎屑、岩屑及卵石在区内都有分布。西昌昔格达组形成于安宁河之后,其沉积环境应为安宁河局部下陷形成的断陷湖盆,沉积物来源具有很强的局地性。  相似文献   
282.
283.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
284.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   
285.
286.
287.
288.
289.
290.
Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and the need for a more general framework for estimating the factor of safety of long and infinite slopes involving non‐homogeneous soil profiles. The paper describes finite element methods that demonstrate the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to some counter‐intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号