首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8093篇
  免费   1283篇
  国内免费   2047篇
测绘学   537篇
大气科学   1982篇
地球物理   1956篇
地质学   3829篇
海洋学   1075篇
天文学   398篇
综合类   789篇
自然地理   857篇
  2024年   25篇
  2023年   106篇
  2022年   346篇
  2021年   381篇
  2020年   312篇
  2019年   392篇
  2018年   399篇
  2017年   355篇
  2016年   454篇
  2015年   398篇
  2014年   448篇
  2013年   509篇
  2012年   398篇
  2011年   451篇
  2010年   396篇
  2009年   447篇
  2008年   365篇
  2007年   333篇
  2006年   304篇
  2005年   310篇
  2004年   217篇
  2003年   240篇
  2002年   221篇
  2001年   237篇
  2000年   291篇
  1999年   436篇
  1998年   329篇
  1997年   323篇
  1996年   325篇
  1995年   274篇
  1994年   233篇
  1993年   206篇
  1992年   165篇
  1991年   137篇
  1990年   114篇
  1989年   115篇
  1988年   103篇
  1987年   57篇
  1986年   60篇
  1985年   43篇
  1984年   41篇
  1983年   18篇
  1982年   18篇
  1981年   25篇
  1980年   16篇
  1979年   10篇
  1978年   8篇
  1976年   6篇
  1973年   7篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
291.
An analytical expression of a gravity retaining wall's seismic stability against sliding and overturning is proposed in this article. The derivation, aiming at the cohesionless soil with inclined backfill surface and nonvertical wall back, is based on limit equilibrium analysis and the pseudo-dynamic method. The variations of the sliding and overturning stability safe factors with the horizontal seismic acceleration are investigated for different seismic amplification factors, soil friction angles, wall friction angles, vertical seismic acceleration coefficients, wall back inclination angles, and backfill surface inclination angles. The results indicate that the soil friction and horizontal seismic action significantly impact the seismic stability. The increase of vertical earthquake action changes the curvature of stability factor curves. The wall friction and back inclination strengthen the gravity retaining wall's resistance to sliding and overturning failure while the backfill surface inclination plays a negative role in the seismic stability. We also found that the seismic stability safe factors calculated by the proposed method are larger but more reasonable than those by the Mononobe-Okabe method.  相似文献   
292.
Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata (Porphyra haitanensis) is an economically important genus that is cultured widely in China. P. haitanensis is cultured on a larger scale than Pyropia yezoensis, making up an important part of the total production of cultivated Pyropia in China. However, the majority of molecular mechanisms underlying the physiological processes of P. haitanensis remain unknown. P. haitanensis could utilize inorganic carbon and the sporophytes of P. haitanensis might possess a PCK-type C4-like carbon-fixation pathway. To identify microRNAs and their probable roles in sporophyte and gametophyte development, we constructed and sequenced small RNA libraries from sporophytes and gametophytes of P. haitanensis. Five microRNAs were identified that shared no sequence homology with known microRNAs. Our results indicated that P. haitanensis might posses a complex sRNA processing system in which the novel microRNAs act as important regulators of the development of different generations of P. haitanensis.  相似文献   
293.
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.  相似文献   
294.
Ventilation in the North Pacifi c is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model(HYCOM) and Quik SCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy fi eld can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy fi eld, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction.  相似文献   
295.
Cheng  Yinhe  Zhou  Shengqi  Wang  Dongxiao  Lu  Yuanzheng  Huang  Ke  Yao  Jinglong  You  Xiaobao 《中国海洋湖沼学报》2016,34(3):619-628
The observed characteristics of lower atmospheric ducts over the South China Sea(SCS) were analyzed based on Global Position Systerm(GPS) radiosonde data collected four times daily during autumn open cruises from 2006 to 2012.Duct occurrence,thickness,and strength over the SCS were about 40%,150-m thick,and 8 M units,respectively,which were larger than during the summer monsoon period.Most ducts occurred at heights 1 500 m and these ducts easily trap electromagnetic wave clusters with wavelengths 2 m.Diurnal variation of the SCS ducts appeared evident.They occurred more often at midnight at higher altitudes(about 1 100 m),with a thickest layer of about 145 m and less frequently during the evening at lower altitudes(about 800 m),with a thinnest layer of about 125 m.Moreover,ducts during the daytime at a mean height of about 900 m,with the greatest strength of about 10 M units.Furthermore,all duct variables observed over the SCS in autumn decreased from north to south.These findings are useful not only in the design of radar and communication systems,but also for evaluating possible effects of anomalous propagation on meteorological radar and military applications.  相似文献   
296.
Global abrupt climate change from Marinoan snowball Earth to greenhouse Earth, recorded as cap carbonate overlain on diamictite, had shed the first light on Cambrian bio-radiation. The most documented cap carbonate sections are typical with comprehensive δ13C negative values and ubiquitous sedimentary structures, such as tepee-like, sheet-crack etc., which are associated with successive glacial eustatic variation caused by isostatic rebound in shallow-water facies. Here we report a deep-water basinal cap carbonate section with strong negative δ13C values in the southern margin of the Qinling Orogen, Heyu, Chengkou County, Chongqing in China, which consists of massive dolostone with abundant carbonaceous laminae. However, it lacks the sedimentary structure as mentioned above and is overlain by thin-bedded silicious shales and cherts. A K-bentonite bed was discovered within the base of cap carbonates, about 0.7 m above the top of the Marinoan diamictite. Magmatic zircons that were separated from the K-bentonite bed yield a SIMS concordia U–Pb age of 634.1 ± 1.9 Ma (1σ, MSWDCE = 0.31, ProbabilityCE = 1.000, n = 20). The age is in good agreement with previously reported TIMS U–Pb ages for the termination of Marinoan glaciation and provides a geochronological constraint for the Ediacaran successions in the Qinling Orogen.  相似文献   
297.
298.
Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally,two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling(superplume) systems. Based on this global mantle structure,we examine the distribution of extensional stress applied to the supercontinent by both subsupercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that:(1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat;(2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup;(3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force.  相似文献   
299.
Wave–current interaction (WCI) is important in modulating hydrodynamics and water mixing in estuaries, and thereby the transport of water-borne materials. However, the effects of WCI on salt transport and salt intrusion in estuaries during storm events have been rarely examined. In the present study, we use a coupled atmosphere–ocean–wave–sediment transport (COAWST) modeling system to investigate the effects of WCI on salt intrusion in the highly stratified Modaomen Estuary during Typhoon Hagupit (2008). The model is validated by the measured wave, water elevation, and surface salinity data, and several diagnostic model experiments are conducted. WCI increases the storm surge by 0.8 m at the peak surge (25% of the total surge height). The wave-breaking-induced momentum flux and the Stokes drift increase the magnitude of the landward flow by 0.3 m s?1 (30% of the total landward flow). In addition, the waves increase water mixing by 2–4 times compared with that without waves. Hence, WCI significantly increases the landward advective salt transport and decreases the steady shear transport. The net effect of the WCI is a significant increase of salt import and salt intrusion during the typhoon event. However, in the aftermath of the storm, the imported salt water is rapidly flushed out by the increased river discharge, and the estuary regains its stratification within one day.  相似文献   
300.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号