首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
测绘学   2篇
大气科学   2篇
地球物理   21篇
地质学   34篇
海洋学   5篇
天文学   1篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   8篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
21.
Phytoremediation has been applied for treating an extensive range of environmental contaminants such as anti-diabetic drug metformin which is increasingly found as environmental contaminant. These contaminants are released to the environment via human and veterinary medicine and pharmaceutical industries. In this study, native plant capabilities for uptake of metformin from wastewater were investigated. Moreover, uptake rate of metformin was studied in two different concentrations of 20 and 50 mg l?1 metformin solution by Amaranthus retroflexus, Ricinus communis, Brassica napus, Celosia cristata, Helianthus annuus and Phragmites australis. The results showed that after exposing to 20 mg l?1 metformin solution 69.53 ± 2.25% of metformin was remediated by H. annuus plants. Also in 50 mg l?1 metformin solution, H. annuus plants showed the most remediation potential (65.7 ± 1%). Metformin uptake is raised by B. napus and C. cristata plants along with increasing metformin concentration. There was no evidence of the presence of metformin in the roots and shoots of R. communis and C. cristata. The results also indicated that plants such as H. annuus can be a potential candidate for uptake of metformin from wastewater.  相似文献   
22.
Nutrients are important building blocks for healthy aquatic ecosystems and are generally nontoxic; but they can change with alteration in environmental parameters. The main objective of this study was to consider the seasonal variability of NO 3 , PO 4 3– and total suspended solids (TSS) concentrations in water. The study sites, stream crossings (L30, L15) and river (R), are located in the hyrcanian forests, district 1 of Darabkola forest. The sampling was conducted in winter and spring. Water samples were taken into plastic bottles, labeled, and carried out to the laboratory for NO 3 , PO 4 3– and TSS analysis. T-test results showed that there was a seasonal change in nutrient concentrations (p < 0.05) except for NO 3 concentration at L30. Also, there was no significant seasonal change in TSS concentrations at all stations. Pearson correlation analysis did not reveal the same trend. Further analysis showed that the effect of road age on water quality parameters was statistically significant for PO 4 3– in spring and winter. Atmospheric precipitation plays vital role in nutrient loss and increasing concentration of suspended sediment. To prevent soil erosion from activities and discharge of wastes in the vicinity of river and stream an effective management should be planned and enforced.  相似文献   
23.
Summary Evaluation of the effects of small repetitive earthquakes on the strength parameters of rock joints in active seismic zones is of interest of the designers of underground constructions. In order to evaluate these effects, it is necessary to study the behaviour of rock joints under dynamic and cyclic loadings. This paper presents the results of a systematic study on the behaviour of artificial rock joints subjected to cyclic shearing. More than 30 identical replicas have been tested using triaxial compression devices under different conditions of monotonic and cyclic loading. At the first stage a few samples have been tested in monotonic loading modes under various confining pressures and rate of displacement. In the second series of tests, small cyclic loads were applied on the samples for increasing number of cycles, frequency levels and stress amplitudes. These were then followed by monotonic loading again. The variations of maximum and residual shear strengths for each test have been studied. The results show increase of shear strength as a result of the increase in confining pressure and they display decrease of shear strength due to the increase of rate of loading, number of cycles, frequency levels and stress amplitudes.  相似文献   
24.
The goal of this study is examination of the mixture between adsorption and permeation process for removing chromium (VI) from the water. Two types of supported membranes are developed: The first one which was made by sol–gel method is called nanoporous and the second one which was made by electrospinning is called nanofiber. The sorption capacity of nanoporous and nanofiber is examined in single batch experiments at various pH values, and it is found that maximum chromium removal is observed for both nanoporous and nanofiber at pH 3.5. Adsorption studies illustrated that the Cr(VI) adsorption onto alumina nanoporous and nanofiber is affected by changes in pH, contact time, dosage of adsorbent, concentration of chromium and solution volume. Langmuir and Freundlich isotherms can be used to explain the adsorption equilibria of Cr(VI) onto alumina nanoporous and nanofiber. It was found that balance adsorption data adequate Langmuir isotherm more than Freundlich model. Adsorption kinetics was found to be fitted to pseudo-second order and Weber and Morris model. The output of multiple linear regressions was run for the second-order response surface model implied that the linear agents of pH, sorbent dosage and Cr(VI) concentration are more significant factors. Manufacturing electrospun alumina nanofiber and sol–gel nanoporous with these cheap materials, renewable and fast methods are so important although the removal percentage is significant.  相似文献   
25.
Sodium dodecyl sulphate, (SDS) is an anionic surfactant that widely used all over the world. They will eventually end-up and accumulate in household or industrial sewage. Due to their high foaming capabilities, which can cause numerous problems in sewage treatment facilities as well as direct toxic effects on many different organisms in ecosystem; they are generally considered as serious pollutants. In this survey, two different bacteria were isolated from Tehran municipal activated sludge. Biochemical tests as well as 16S rRNA gene sequencing for identification have been applied. After experiments to optimize the pH and temperature for growth of the two bacterial isolates, the extent of SDS utilization was evaluated by HPLC method. Two bacterial isolates show which ability to rapidly and actively degrade SDS upon using it as their sole source of carbon. The identification tests have indicated the two isolates to be Acinetobacter johnsoni and Pseudomonas beteli. The Pseudomonas beteli and Acinetobacter johnsoni isolates were able to degrade 97.2% and 96.4% of the original SDS levels after 10 days of growth; respectively. Mixed culture of the two isolates did not significantly increase SDS utilization, (97.6%). In conclusion, the results of this study suggest that growth of simple bacteria such as Acinetobacter or Pseudomonas in household and industrial sewage can be cost-effective method anionic surfactants elimination.  相似文献   
26.
In this study Free vibration analysis of vertical rectangular Mindlin plates resting on Pasternak elastic foundation and fully or partially in contact with fluid on their one side is investigated for different combinations of boundary conditions. The plate is assumed to be one of vertical rectangular walls of a container in contact with fluid. In order to analyze the interaction of the Mindlin plate with the elastic foundation and fluid system, three displacement components of the plate are expressed in the Ritz method by adopting a set of static Timoshenko beam functions satisfying geometric boundary conditions in a Cartesian co-ordinate system. The method of separation of variables and the method of Fourier series expansion is used to model fluid and to obtain the exact expression of the motion of fluid in the form of integral equations. The fluid domain is finite in depth and width but infinite in the length direction. To demonstrate the accuracy of the present solution, convergence study is first carried out and then a few comparison studies are carried out with the available data in the literature. Finally, natural frequencies of rectangular plates are presented in tabular and graphical forms for different fluid levels, foundation parameters, aspect ratios, thickness to width ratios and boundary conditions.  相似文献   
27.

Tunneling is often unpopular with local residents and environmentalists, and can cause aquifer damage. Tunnel sealing is sometimes used to avoid groundwater leakage into the tunnel, thereby mitigating the damage. Due to the high cost of sealing operations, a detailed hydrogeological investigation should be conducted as part of the tunneling project to determine the impact of sealing, and groundwater modeling is an accurate method that can aid decision-making. Groundwater-level drawdown induced by the construction of the Headrace water-conveyance tunnel in Sri Lanka dried up 456 wells. Due to resulting socio-environmental problems, tunnel sealing was decided as a remedy solution. However, due to the expectation of significant delays and high costs of sealing, and because the water pressure in the tunnel may prevent groundwater seepage into the tunnel during operation, there was another (counter) decision that the tunnel could remain unsealed. This paper describes groundwater modeling carried out using MODFLOW to determine which option—sealed or unsealed tunnel—is more effective in groundwater level recovery. The Horizontal Flow Barrier and River packages of MODFLOW were used to simulate sealed and unsealed tunnels, respectively. The simulation results showed that only through tunnel sealing can the groundwater level be raised to preexisting levels after 18 years throughout the study area. If the tunnel remains unsealed, about 1 million m3/year of water conveyed by the tunnel will seep into the aquifer, reducing the operational capacity of the tunnel as a transport scheme. In conclusion, partial tunnel sealing in high-impact sections is recommended.

  相似文献   
28.
High difference between dielectric constant of water (dielectric constant about 80) and dielectric constant of dried soil (dielectric constant about 2–3) makes Synthetic Aperture Radar (SAR) highly capable in soil moisture estimation. However, there are other factors which affect on radar backscattering coefficient. The most important parameters are vegetation cover, surface roughness and sensor parameters (frequency, polarization and incidence angle). In this paper, the importance of considering the effects of these parameters on SAR backscatter coefficients is shown by comparing different soil moisture estimation models. Moreover, an experimental soil moisture estimation model is developed. It is shown that this model can be used to estimate soil moisture under a variety of vegetation cover densities. The new developed model is based on combination of different indices derived from Landsat5-Thematic Mapper and AIRSAR images. The AIRSAR image is used for extraction of backscattering coefficient and incidence angle while TM image is used for calculation of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Brightness Temperature. Then a soil moisture estimation model which is named as Hybrid model is developed based on integration of all of these parameters. The accuracies of this model are assessed in the NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7 by using SAR data in C band and L band frequencies and also in different polarizations of HH, HV, VV and TP. The results show that for instance in L band with HV polarization, R-square values of 0.728, 0.628 and 0.527 are obtained between ground measured soil moisture and estimated soil moisture values using the Hybrid model for NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7, respectively.  相似文献   
29.
Generally, knowledge of stress redistribution around the longwall panel causes a better understanding of the mechanisms that lead to ground failure, especially to rockbursts. In this paper, passive seismic velocity tomography is used to demonstrate the state of stress around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. To determine the location of seismic events and execute the process of tomography, double-difference method is employed as a local earthquake tomography. Since passive sources are used, the ray coverage is insufficient to achieve the quality images required. The wave velocity is assumed to be the regionalized variable and it is therefore estimated in a denser network, by using geostatistical estimation method. Subsequently, the three-dimensional images of wave velocity are created and are sliced into the coal seam. These images clearly illustrate the stressed zones that they are appropriately in compliance with the theoretical models. Such compliance is particularly apparent in the front abutment pressure and the side abutment pressure near the tailgate entry. Movements of the stressed zones along the advancing face are also evident. The research conclusion proves that the combined method, based on double-difference tomography and geostatistical estimation, can potentially be used to monitor stress changes around the longwall mining panel continuously. Such observation could lead to substantial improvement in both productivity and safety of mining operations.  相似文献   
30.
Shear wave velocity is one of the important factors representing the dynamic characteristics of soil layers. Hence, many researchers have focused their studies on determining shear wave velocity by direct field measurements or expressions developed by other soil parameters. The shear module and damping ratio of the soil layers also play a similar role in the majority of dynamic soil response analyses. Nevertheless, since they have to be measured in the laboratory by resonant column or cyclic triaxial tests on undisturbed samples, the possibility of preparing such samples and the reliability of the obtained results are of great concerns. In the present study, great effort has been made to determine the above dynamic factors by means of field data obtained from a versatile instrument, namely the seismic piezocone (SPCTU), and to derive expressions correlating them with some parameters obtainable by much simpler instruments. The reliability of laboratory measurements on undisturbed samples is also evaluated. The seismic piezocone test apparatus has been employed to evaluate the soil properties at 1-m depth intervals by means of measuring tip resistance, sleeve resistance, pore pressure and shear wave velocity. The shear module and the damping ratio are calculated using field data. Meanwhile, in order to assess the laboratory measurements of these parameters, some resonant column tests and cyclic triaxial tests on undisturbed samples of the same soil layers have been carried out. In order to compare the field results of shear modulus and damping ratios with those obtained from laboratory tests, the influences of the soil nature and sample disturbance on the conventional laboratory methods are evaluated and discussed. The shear wave velocity is correlated to overburden pressure and the corrected tip resistance for two groups of fine soils, namely silty clays and carbonate clayey silts, which mainly cover the areas under study in this project, are located in southern parts of Iran near the Persian Gulf. According to the results of the present study, there are narrow limits of shear modulus regarding soils for which the laboratory tests and the field measurements yield approximately the same shear modulus. This limit of shear modulus is about 30–50(MPa) for clay deposits and 70–100 (MPa) for sandy deposits. Also the shear wave velocity can be calculated by a simple expression from total overburden pressure and the tip resistance of simple cone penetration test results conventionally available in many soil explorations prior to engineering practices. However, if the pore pressure inside the saturated soil deposits can be measured by a piezocone apparatus, the shear wave velocity may be calculated using another suggested equation in terms of effective overburden pressure in the present study. Regarding the shear module and the damping ratio, due to the disturbances of the stiff deposits in the sampling process and great deviations of laboratory results from field results, the laboratory measurements of these parameters out of the above limits are not recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号