Rapid population growth, industrialization, and agricultural expansion in the Khoy area (northwestern Iran) have led to its dependence on groundwater and degradation of groundwater quality. This study attempts to decipher the major processes and factors that degrade the groundwater quality of the Khoy plain. For this purpose, 54 groundwater samples from unconfined and confined aquifers of the plain were collected in July 2017 and analyzed for major cations and anions (Na, K, Ca, Mg, HCO3, SO4, and Cl), minor ions (NO3 and F), and Al. Magnesium and bicarbonate were identified as the dominant cation and anion, respectively. Several ionic ratios and geochemical modeling using PHREEQC indicated that the most important hydrogeochemical processes to affect groundwater quality in the plain were weathering and dissolution of evaporitic and silicate minerals, mixing, and ion exchange. There were smaller effects from evaporation and anthropogenic factors (e.g., industries). Results showed that the high salinity of the groundwater in the northeast area of the plain was due to the high solubility of the evaporitic minerals, e.g., halite and gypsum. Reverse ion exchange and the contribution of mineral dissolution were more significant than ion exchange in the northeastern part of the plain. Elevated salinity of the groundwater in the southeast was attributed mostly to reverse ion exchange and somewhat to evaporation. 相似文献
China Ocean Engineering - Performing repeatable duties automatically was the dreams of human being for centuries. Although full autonomy has long been dreamed of by visionaries, many researches... 相似文献
Geotechnical and Geological Engineering - Small variation in shear strength parameters results in remarkable changes in the safety factor (SF) of a rock slope. In this regard, rock mass strength of... 相似文献
Wind plays an important role on the ecosystems and hydrological cycles besides other meteorological parameters such as temperature, precipitation, sunshine, and relative humidity. It strongly affects evapotranspiration, especially in arid and semiarid regions where there are serious problems in regard to water resource management. Evaluating the wind speed trend can provide good information for future agricultural planning. This study was conducted in order to investigate the wind speed trends over 24 synoptic meteorological stations located in arid and semiarid regions of Iran from 1975 to 2005. Near-surface wind speed was trended by nonparametric Mann–Kendall test spatially and temporally in three time scales (annual, seasonal, and monthly). Then, Sen’s slope estimator was used to determine the amount of the changes; furthermore, 10-year moving average low-pass filter was applied to show general trends. Finally, the smoothed time series derived from the mentioned filter were classified in three clusters for each time series and then mapped to show their spatial distribution pattern. Results showed insignificant and significant, increasing and decreasing trends during the surveyed time. Wind speeds in less than 50 % of stations changed statistically in all time scales, and in most cases, the frequency of the upward trends was more than that of downward ones. The spatial distribution of significant wind speed showed that the increase mostly occurred in eastern part. Clustering gave us the turning point around 1990. Clearly, when clusters were mapped, they indicated the same pattern as the Z value maps derived from Mann–Kendall test which meant that the outputs of the mentioned method confirmed the other one. As the wind speed trends in different stations likely to follow the previous evapotranspiration (ET0) trend results in Iran, it confirms that wind speed was an effective parameter on ET0, even though other parameters should be considered too. 相似文献
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity (CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management (grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO3 percentage and physiographic variable including slope, elevation, and convex and concave formations (p < 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones. 相似文献
Spherical harmonic expansions of the geopotential are frequently used for modelling the earth’s gravity field. Degree and
order of recently available models go up to 360, corresponding to a resolution of about50 km. Thus, the high degree potential coefficients can be verified nowadays even by locally distributed sets of terrestrial gravity
anomalies. These verifications are important when combining the short wavelength model impact, e.g. for regional geoid determinations
by means of collocation solutions. A method based on integral formulae is presented, enabling the improvement of geopotential
models with respect to non-global distributed gravity anomalies. To illustrate the foregoing, geoid computations are carried
out for the area of Iran, introducing theGPM2 geopotential model in combination with available regional gravity data. The accuracy of the geoid determination is estimated
from a comparison with Doppler and levelling data to ±1.4m. 相似文献
Résumé La suite magmatique du Damavand — un volcan isolé dans l'Elbroz, au Nord de l'Iran-a les caractéristiques d'une association magmatique avec absarokite-shoshonitebanakite. Toutefois, la relative rareté des termes intermédiaires permet de poser le problème de l'unicité de la série.L'origine de ces laves potassiques est discutée en fonction d'une paléosubduction océanique, partie du Zagros à l'Aquitanien ou, alternativement, en fonction d'une structure naissante de la Caspienne.
Zusammenfassung Die magmatische Serie von Damavand, aus einem isolierten Vulkan in der nordiranischen Elbroz-Provinz, weist alle Eigenschaften einier Absarokit-Shoshonit-magmatischen Assoziation auf.Die Herkunft dieser Kalilaven wird in bezug auf einer ozeanischen Palaeosubduktion, die im Zagros während des Aquitains anfing, diskutiert. Die Alternative eines Zusammenhangs mit der kaspischen Struktur wird in Betracht gezogen.The Damavand magmatic series — from an isolated volcano in the Elbroz province, north of Iran — holds all characters of an absarokite-shoshonite-banakite magmatic association. However, the intermediate terms are too seldom to solve the problem of the series unity.The origin of these potassic lavas is discussed as related to either an oceanic paleosubduction which started from the Zagros at Aquitanian, or, possibly, related to the evolving Caspian structure.
Occurrence of drought, as an inevitable natural climate feature, cannot be ceased while happening. However, costs of the consequences could be alleviated using mature scientific integrated approaches. To reduce the amount of damage, it is required to provide “Contingency” and “Mitigation” action plans. For this reason, development of efficient operating instructions for various regions based on weather conditions and field studies is needed as well as having a sophisticated understanding of socioeconomic situations. This paper describes an approach to provide the first national agricultural drought risk management plan for a river basin in Iran country as a pilot. The study lasted for 3 years as a national technical research project for the “soil conservation and watershed management research institute.” To reach the objectives, besides holding workshops and specialized think-tank meetings, field researches were done. Based on the socioeconomic data sources in the basin and the results of meetings by participation of local managers and residents, the final plan was developed. Moreover, in order to carry out this research, different climatic, agricultural and local information were collected in the watershed. In the next steps, potential risks and vulnerabilities of various agricultural sectors due to the hazard were evaluated. In this study, a nine-step approach to develop an agricultural drought risk management plan proposing different scientific–managerial phases based on the latest experts’ opinions, released international scientific best practices, and existing conditions governing the region was followed. With respect to the average income of US$ one million from agriculture and animal husbandry in the river basin, total drought loss varies from US$ 86,000 to US$ 258,000 for a range of light to very intense drought conditions, respectively. The setup of these nine executive phases defined monitoring, forecasting, and warning steps in working teams and managed the subprograms in partnership with stakeholders and decision-makers to mitigate the rate of drought damage from 30 to 47% (depending on the severity of the drought condition).