首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   5篇
  国内免费   2篇
测绘学   2篇
大气科学   6篇
地球物理   41篇
地质学   103篇
海洋学   4篇
天文学   20篇
综合类   3篇
自然地理   5篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   9篇
  2018年   16篇
  2017年   14篇
  2016年   15篇
  2015年   9篇
  2014年   4篇
  2013年   21篇
  2012年   4篇
  2011年   12篇
  2010年   9篇
  2009年   14篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1979年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
111.
A bioreactor landfill is operated to enhance refuse decomposition, gas production, and waste stabilization. Some of the potential advantages of bioreactor include rapid stabilization of waste, increased landfill gas generation, gain in landfill space, enhanced leachate treatment, and reduced post closure maintenance period. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional Subtitle D landfills. However, the addition of leachate to accelerate the decomposition changes the physical and engineering characteristic of waste and therefore affects the geotechnical characteristics of waste mass. The changes in the physical and mechanical characteristics of solid waste with time and decomposition are expected to affect the shear strength of waste mass. The objective of this paper is to analyze the stability of solid waste slopes within the bioreactor landfills, as a function of time and decomposition. The finite element program PLAXIS is used for numerical modeling of bioreactor landfills. Stability analysis of bioreactor landfills was also performed using limit equilibrium program STABL. Finally the results from finite element program PLAXIS and limit equilibrium program STABL are compared. GSTABL predicted a factor of safety of more than 1 in all the cases analyzed, whereas PLAXIS predicted a factor of safety of less than 1 at advanced stages for a slope of 2:1. However, the interface failures between solid waste and landfill liners have not been considered in this paper.  相似文献   
112.
A biaxial testing program has been performed to study the process of brittle failure in crystalline rocks. Dental plaster has been selected as a model material, and mixing with different ratios of distilled water, different types of common minerals of crystalline rocks have been simulated in the form of brick-like small elements. These elements have been interlocked together according to four systematic patterns and final specimens with 180 × 180 × 76 mm dimensions have been obtained. Details of different types of cracks observed during loading process, effects of mechanical, geometrical and confining pressure on the cracking intensity, the influence of different types of heterogeneity on the macroscopic properties of a system of interlocked elements, and the sequence of events during the failure process are presented in this paper. Based on these observations, a revised mechanism for brittle failure is proposed.  相似文献   
113.
Nonlinear static analysis procedures are key tools in evaluating the performance of existing buildings and verifying the design of seismic retrofits in seismically active regions. In this procedure, nonlinear force-displacement or moment-curvature (M-φ) behavior needs to be defined. In the ATC-40 document, values of M-φ have been proposed to model elements in a nonlinear procedure. However, these values need to be investigated to determine if they are representative of actual values. In this paper, an attempt has been made to numerically derive M-φ curves to simulate actual performance. Then, these curves are compared with the ATC-40 recommended curves with respect to various parameters. The study indicated that ATC-40 suggested values are conservative in nature in most situations.  相似文献   
114.
Sediments and surface water contamination by the industrial effluents containing heavy metals is the most detrimental environmental impact. Therefore, the present work attempts to determine the status of eight heavy metal distribution in sediments and water samples, and their ecological risks’ assessment in the studied area. The distribution pattern of heavy metals in the water and sediment follows the sequences: Zn > Cu > Pb > Cr > Mn > Ni > As > Cd and Mn > Zn > Cr > Pb > Cu > Ni > As > Cd, respectively. Gross water pollution is observed at different sampling points of Dhalai Beel and Bangshi River. The comparison of sedimentary mean metal concentrations with several environmental contamination monitoring parameters, viz, threshold effect level (TEL), probable effect level (PEL), and severe effect lever (SEL) indicates that the metal levels are less than PEL except Cr. Moreover, the level of contamination degree (C d) and modified degree of contamination (mC d) indicates ‘low’ and ‘nil to low’ degree of contamination, respectively. Pollution load indices (PLI) of the studied area are lower than unity, indicates no pollution. Furthermore, a toxic-response factor is applied to assess the potential ecological risk of these heavy metals into the water body. The results of this study exhibit a low potential ecological risk of heavy metals. The Pearson’s correlation and cluster analysis are also performed to assess the heavy metal interactions in water and sediment samples.  相似文献   
115.
The role of shear dilation as a mechanism of enhancing fluid flow permeability in naturally fractured reservoirs was mainly recognized in the context of hot dry rock (HDR) geothermal reservoir stimulation. Simplified models based on shear slippage only were developed and their applications to evaluate HDR geothermal reservoir stimulation were reported. Research attention is recently focused to adjust this stimulation mechanism for naturally fractured oil and gas reservoirs which reserve vast resources worldwide. This paper develops the overall framework and basic formulations of this stimulation model for oil and gas reservoirs. Major computational modules include: natural fracture simulation, response analysis of stimulated fractures, average permeability estimation for the stimulated reservoir and prediction of an average flow direction. Natural fractures are simulated stochastically by implementing ‘fractal dimension’ concept. Natural fracture propagation and shear displacements are formulated by following computationally efficient approximate approaches interrelating in situ stresses, natural fracture parameters and stimulation pressure developed by fluid injection inside fractures. The average permeability of the stimulated reservoir is formulated as a function of discretized gridblock permeabilities by applying cubic law of fluid flow. The average reservoir elongation, or the flow direction, is expressed as a function of reservoir aspect ratio induced by directional permeability contributions. The natural fracture simulation module is verified by comparing its results with observed microseismic clouds in actual naturally fractured reservoirs. Permeability enhancement and reservoir growth are characterized with respect to stimulation pressure, in situ stresses and natural fracture density applying the model to two example reservoirs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
116.
Radar estimates of rainfall are being increasingly applied to flood forecasting applications. Errors are inherent both in the process of estimating rainfall from radar and in the modelling of the rainfall–runoff transformation. The study aims at building a framework for the assessment of uncertainty that is consistent with the limitations of the model and data available and that allows a direct quantitative comparison between model predictions obtained by using radar and raingauge rainfall inputs. The study uses radar data from a mountainous region in northern Italy where complex topography amplifies radar errors due to radar beam occlusion and variability of precipitation with height. These errors, together with other error sources, are adjusted by applying a radar rainfall estimation algorithm. Radar rainfall estimates, adjusted and not, are used as an input to TOPMODEL for flood simulation over the Posina catchment (116 km2). Hydrological model parameter uncertainty is explicitly accounted for by use of the GLUE (Generalized Likelihood Uncertainty Estimation). Statistics are proposed to evaluate both the wideness of the uncertainty limits and the percentage of observations which fall within the uncertainty bounds. Results show the critical importance of proper adjustment of radar estimates and the use of radar estimates as close to ground as possible. Uncertainties affecting runoff predictions from adjusted radar data are close to those obtained by using a dense raingauge network, at least for the lowest radar observations available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
117.
A study was made of the applicability of three different techniques for equivalent dose (De) determination in the optical dating of quartz: the single‐aliquot regenerative‐dose technique (SAR), the single‐aliquot additive‐dose technique (SAAD) and the multiple‐aliquot additive‐dose technique (MAAD). For this purpose, quartz grains were extracted from a sequence of Upper Pleniglacial to Late‐glacial coversands exposed at the locality of Ossendrecht in the southwestern Netherlands, a site for which both radiocarbon and earlier luminescence dates are available, providing independent age control. Upon testing the different assumptions underlying each of the three OSL techniques investigated, the SAR protocol was found to be the technique of choice. The optical ages obtained with this protocol were in good agreement with the chronostratigraphical position of the sediments investigated and with the available chronostratigraphical information on the same and equivalent deposits. This confirms the suitability of the SAR technique for dating coversands. Furthermore, a small laboratory intercomparison of SAR‐based De determinations yielded results that were in fair overall agreement. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
118.
Natural Hazards - Soil liquefaction resistance evaluation is an important site investigation for seismically active areas. To minimize the loss of life and property, liquefaction hazard analysis is...  相似文献   
119.
120.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号