首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
测绘学   1篇
大气科学   2篇
地球物理   7篇
地质学   14篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2010年   4篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1997年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
11.
The new result of SHRIMP U–Pb zircon dating of the Kinshozan Quartz Diorite from the Kanto Mountains, Japan, provides 281.5 ± 1.8 Ma. The age is 30 m.y. older than the available age of the Kinshozan Quartz Diorite obtained by hornblende K–Ar method. The new U–Pb zircon age represents the time of crystallization of the Kinshozan Quartz Diorite. The hornblende K–Ar age indicates the time that the Kinshozan Quartz Diorite cooled down to 500 °C which is the closure temperature of the systematics. Permian granites are found in small exposures in Japan, and frequently referred to as 250 Ma granites. The Kinshozan Quartz Diorite is considered as a type of the 250 Ma granites, and the age was influential in establishing a model of Paleozoic tectonic evolution for the Japanese Islands. The new age of the Kinshozan Quartz Diorite provides the opportunity to re‐examine the model. The Kinshozan Quartz Diorite and other Permian granites in the south of the Median Tectonic Line of Japan were constituents of the Paleo‐Ryoke Belt. The geochemical characteristics of the granitic rocks in the Paleo‐Ryoke Belt indicated that the granitic rocks were formed in a primitive island arc environment, and the new trace element data also support this interpretation. Examination of the available data and results of the present study suggests the late Paleozoic granitic activity in Japan as follows. At about 310–290 Ma, arc magmatism generated adakitic granites and other granites in the South Kitakami Belt. Quartz diorite and tonalites of primitive characteristic, such as the Kinshozan Quartz Diorite and granites in the Maizuru Belt appear to have been formed at the immature island arc, and accreted to the Japanese Islands at the end of Paleozoic or early Mesozoic era. During 260–240 Ma, granitic activity took place in the Hida and Maizuru Belts as a part of the Asian continent.  相似文献   
12.
Long-lived intra-oceanic arcs of Izu-Bonin-Marianas (IBM)-type are built on thick, granodioritic crust formed in the absence of pre-existing continental crust. International Ocean Discovery Program Expedition 350, Site U1437, explored the IBM rear arc to better understand continental crust formation in arcs. Detailed petrochronological (U–Pb geochronology combined with trace elements, oxygen and hafnium isotopes) characterizations of zircon from Site U1437 were carried out, taking care to exclude potential contaminants by (1) comparison of zircon ages with ship-board palaeomagnetic and biostratigraphic ages and 40Ar/39Ar geochronology, (2) analysing zircon from drill muds for comparison, (3) selectively carrying out in situ analysis in petrographic thin sections, and (4) minimizing potential laboratory contamination through using pristine equipment during mineral separation. The youngest zircon ages in Site U1437 are consistent with 40Ar/39Ar and shipboard ages to a depth of ~1390 m below sea floor (mbsf) where Igneous Unit Ig 1 yielded an 40Ar/39Ar age of 12.9 ± 0.3 Ma (all errors 2σ). One single zircon (age 15.4 ± 1.0 Ma) was recovered from the deepest lithostratigraphic unit drilled, Unit VII (1459.80–1806.5 mbsf). Site U1437 zircon trace element compositions are distinct from those of oceanic and continental arc environments and differ from those generated in thick oceanic crust (Iceland-type) where low-δ18O evolved melts are produced via re-melting of hydrothermally altered mafic rocks. Ti-in-zircon model temperatures are lower than for mid-ocean ridge rocks, in agreement with low zircon saturation temperatures, suggestive of low-temperature, hydrous melt sources. Zircon oxygen (δ18O = 3.3–6.0‰) and hafnium (εHf = + 10–+16) isotopic compositions indicate asthenospheric mantle sources. Trace element and isotopic differences between zircon from Site U1437 rear-arc rocks and the Hadean detrital zircon population suggest that preserved Hadean zircon crystals were probably generated in an environment different from modern oceanic convergent margins underlain by depleted mantle.  相似文献   
13.
A part of the boundary layer of reactor zone 10 at the Oklo natural reactor shows a unique petrologic texture, which contains high-grade uraninite and massive apatite concretions. In order to study distribution behavior of fission products around the boundary between the reactor zone and the wall rock and to clarify the relation of migration mechanisms of fission products with geochemical factors, in-situ isotopic analyses of Nd, Sm, Gd, Pb and U in uraninite and apatite from the sample were performed by Sensitive High Resolution Ion Microprobe (SHRIMP). Sm and Gd isotopic ratios of uraninite and apatite show evidence of neutron irradiation with fluence between 4.4-6.8×1019 n/cm2. Judging from the isotopic anomalies of Nd and U, the apatite coexisting with the uraninite plays an important role in trapping fissiogenic LREE and nucleogenic 239Pu into the structure. Systematic Pb isotopic data from apatite, uraninite, galena and minium suggest the following chronological interpretations.
1.
The apatite formed 1.92±0.01 Ga ago and trapped fissiogenic light REE and nucleogenic 239Pu that migrated from the reactor during the criticality.
2.
The uraninite around the boundary between reactor and sandstone dissolved once 1.1∼1.2 Ga ago.
3.
Galena grains were formed by U-Pb mobilization in association with the intrusion of dolerite dyke 0.45∼0.83 Ga ago.
4.
Minium was derived from recent dissolution of galena under locally oxidizing conditions.
  相似文献   
14.
15.
 To accurately measure the pH, Eh, EC and temperature of groundwater retrieved from boreholes, a deep groundwater sampling apparatus was developed which provided sensory measurements both in situ and in a flow-through cell at ground level. Under a pressure of 1×106 Pa the in situ accuracy of the apparatus sensor was within the following limits: pH ±0.2, temperature ±0.1°C, Eh ±10 mV, and EC ±2.4%. The measuring and sampling of deep groundwater from a borehole of more than 1000 m in depth was performed continuously for 30 days. Values of pH were the same for the in situ sensor, the flow-through cell sensor and the laboratory measurements of the sampled water. At the beginning of the sampling period, Eh values of the in situ sensor indicated deep groundwater conditions. The apparatus is particularly useful for Eh measurement. Chemical composition and stable isotope ratios indicated that the groundwater sampled from more than 1000 m depth was a connate water with a chemical composition slightly different from seawater of the present time, and the groundwater retrieved from 800 m depth was a meteoric water. Natural radioactive elements are thought to be the origin of the tritium in the groundwater retrieved from the 1000 m depth. Received: 6 August 1996 / Accepted: 22 October 1996  相似文献   
16.
We report newly obtained U-Pb SHRIMP ages of detrital zircons from metagreywackes in the Hiriyur Formation (Chitradurga Group, Dharwar Supergroup) from the central eastern part of the Chitradurga greenstone belt. U-Pb analyses yield three major Neoarchean age populations ranging from 2.70–2.54 Ga with some minor age population of Mesoarchean. The maximum age of deposition is constrained by the youngest detrital zircon population at 2546 Ma. This is the first report of the occurrence of supracrustal rocks less than 2.58 Ga in the central part of Chitradurga greenstone belt. Close evaluation of detrital ages with the published ages of surrounding igneous rocks suggest that the youngest detrital zircons might be derived from rocks of the Eastern Dharwar craton and the inferred docking of the western and eastern Dharwar cratons happened prior to the deposition of the Hiriyur Formation. The Chitradurga shear zone, dividing the Dharwar craton into western and eastern blocks, probably developed after the deposition. Furthermore, the lower intercept is interpreted as evidence for the Pan-African overprints in the study area.  相似文献   
17.
Hengjian  Lu  Kohiyama  Masayuki  Horie  Kei  Maki  Norio  Hayashi  Haruo  Tanaka  Satoshi 《Natural Hazards》2003,29(3):387-403
The relationship between building damage patterns and human casualties in Nishinomiya City – one of the most heavily damaged cities in the 1995 Hanshin-Awaji Earthquake Disaster – was investigated using photographs of damaged buildings. First, the photographs of buildings in which casualties occurred were identified, and the building damage patterns were judged based on the photographs considering the existence of survival space. Then the relationship between the building damage pattern and casualty occurrence, and the characteristics of casualty distribution, were investigated. The main findings were as follows: Most casualties occurred in relatively old two-story wooden buildings in which the ground floor completely collapsed without survival space; casualties occurred at all building damage levels including ``no damage', and it can be seen that building damage is the major, but not the sole cause, of casualties in an earthquake; in Nishinomiya City, the regional distributions of casualties due to the collapse of buildings that left no survival space is similar to that of casualties due to other types of building damage.  相似文献   
18.
The Taishu Group, a marine formation with a thickness of >5400 m, crops out on Tsushima Island, located in the southwestern Japan Sea. The group, which is generally regarded as early Eocene to early Miocene in age, provides important information about the tectonic setting of the Japan Sea. In this study, we present new SHRIMP U–Pb dates for igneous zircons from the Kunehama Tuff, which is in the basal part of the Taishu Group, and the Oobaura Tuff, which is in the uppermost part of the group. Results show that the Taishu Group was deposited rapidly, during the short interval of 17.9–15.9 Ma (early–middle Miocene), and is equivalent to other early–middle Miocene strata found in the Japan Sea region. Our results provide new constraints on the geological history of the Japan Sea and its islands.  相似文献   
19.
A new U–Pb dating and oxygen isotope analysis of zircons collected from a granitic mylonite and an undeformed granite in the Kamioka area, in the Hida Belt of southwest Japan, was conducted using a sensitive high‐resolution ion microprobe (SHRIMP) to restrict the timing of the mylonitization in the Funatsu Shear Zone, which is situated on the eastern and southeastern margins of the Hida Belt. Here, undeformed granite intrudes into the granitic mylonite deformed by mylonitization in the Funatsu Shear Zone. The granitic mylonite and the undeformed granite yielded U–Pb zircon ages of 242.6 ±1.9 Ma and 199.1 ±1.9 Ma, respectively. The granitic mylonite and the undeformed granite also yielded zircon oxygen isotope ratios (δ18OVSMOW) of 7.74 ±0.37 ‰ and 5.74 ±0.17 ‰, which suggests that these rocks are derived from different magmas. Therefore, the timing of the mylonitization in the Funatsu Shear Zone is constrained to be at least 242.6–199.1 Ma, which is consistent with other data from the Tateyama area. The U–Pb zircon ages of the banded gneiss in the Kamioka area also reveals that the protolith is a sedimentary rock deposited at approximately 256 Ma, and regional metamorphism occurred at 245.0 ±6.6 Ma, which indicates that the mylonitization in the Funatsu Shear Zone occurred after the metamorphism in the Hida Belt. These geochronological and geochemical data give new insight into the relationship between the Hida Belt and the eastern margin of the Asian continent: the geochronological and geochemical data in this study support the possibility that the Funatsu Shear Zone is comparable with the Cheongsan Shear Zone located at the center of the Ogcheon Belt on the Korean Peninsula.  相似文献   
20.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号