首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
地球物理   2篇
地质学   51篇
海洋学   1篇
天文学   1篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有55条查询结果,搜索用时 39 毫秒
41.
P. Bhalla  F. Holtz  R.L. Linnen  H. Behrens 《Lithos》2005,80(1-4):387-400
The aim of this experimental study was to determine the solubility of cassiterite in natural topaz- and cassiterite-bearing granite melts at temperatures close to the solidus. Profiles of Sn concentrations at glass–crystal (SnO2) interface were determined following the method of (Harrison, T.M., Watson, E.B., 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology 84, 66–72). The cassiterite concentration calculated at the SnO2–glass interface is the SnO2 solubility. Experiments were performed at 700–850 °C and 2 kbar using a natural F-bearing peraluminous granitic melt with 2.8 wt.% normative corundum. Slightly H2O-undersaturated to H2O-saturated melt compositions were chosen in order to minimize the loss of Sn to the noble element capsule walls. At the nickel–nickel oxide assemblage (Ni–NiO) oxygen fugacity buffer, the solubility of cassiterite in melts containing 1.12 wt.% F increases from 0.32 to 1.20 wt.% SnO2 with an increasing temperature from 700 to 850 °C. At the Ni–NiO buffer and a given corundum content, SnO2 solubility increases by 10% to 20% relative to an increase of F from 0 to 1.12 wt.%. SnO2 solubility increases by 20% relative to increasing Cl content from 0 to 0.37 wt.% in synthetic granitic melts at 850 °C. We show that Cl is at least as important as F in controlling SnO2 solubility in evolved peraluminous melts at oxygen fugacities close to the Ni–NiO buffer. In addition to the strong effects of temperature and fO2 on SnO2 solubility, an additional controlling parameter is the amount of excess Al (corundum content). At Ni–NiO and 850 °C, SnO2 solubility increases from 0.47 to 1.10 wt.% SnO2 as the normative corundum content increases from 0.1 to 2.8 wt.%. At oxidizing conditions (Ni–NiO +2 to +3), Sn is mainly incorporated as Sn4+ and the effect of excess Al seems to be significantly weaker than at reducing conditions.  相似文献   
42.
New results obtained by the investigation of liquidus and solidus phase relationships in the haplogranite system Qz-Ab-Or are used to discuss the evolution of magmas during their ascent in the crust. It is assumed that the magmas are formed at 720°C, 820°C, 920°C and at a depth corresponding to a pressure of 8 kbar. The starting composition of the magma is taken as 50% melt plus 50% quartz and feldspars. In case of a closed system (no heat exchange and no transfer of elements) the melt fraction of magmas, the water activity and the viscosity increase with decreasing pressure. The temperature slightly decreases. At 700°C the viscosity is approximatively 2 orders of magnitude lower than at 900°C. This is related to the higher amount of water in the (H2O-undersaturated) melt at low T. It is also shown that dehydration melting is only realistic at high T (900°C). At lower temperatures water has to be added from outside to obtain an intrusive magma with approximatively 50% melt.
Zusammenfassung Neue Ergebnisse, erzielt durch Untersuchungen von Liquidus und Solidus Phasenbeziehungen des Granitsystems Qz-Ab-Or, werden benutzt, um die Entwicklung eines granitoiden Magmas während seines Aufstiegs zu diskutieren. Es wird vorausgesetzt, daß die Magmen bei Temperaturen von 720°C, 820°C und 920°C gebildet werden, sowie in einer Tiefe die einem Druck von 8 kbar entspricht. Die anfängliche Zusammensetzung des Magmas wird mit einem Verhältnis von 50% Schmelze sowie 50% Quarz und Feldspäten angenommen. Im Falle eines geschlossenen Systems (kein Austausch von Wärme und Elementen) steigt die Teilschmelzbildung von Magmen, die Aktivität des Wassers und die Viskosität bei abnehmenden Druck; hierbei sinkt die Temperatur leicht. Bei 700°C ist die Viskosität um ca. 2 Größenordnungen geringer als bei 900°C. Dies wird bedingt durch den höheren Gehalt an Wasser in der (H2O-untersättigten) Schmelze bei tieferen Temperaturen. Es wird außerdem gezeigt, daß Magmenbildung durch Dehydratation nur bei hohen Temperaturen realistisch ist (900°C). Bei tieferen Temperaturen muß Wasser von außen zugeführt werden um ein intrusives Magma zu erhalten, das ungefähr 50% Schmelze besitzt.

Résumé L'évolution des magmas granitiques au cours de leur ascension dans la croûte est discutée à la lumière de données nouvelles relatives aux relations entre phases liquides et solides dans le système Q-Ab-Or. On suppose que les magmas se forment à des températures de 720°C, 820°C, 920°C et à une profondeur correspondant à une pression de 8 Kb. On admet pour leur composition initiale un mélange de 50% de liquide et 50% de quartz + feldspaths. Dans le cas d'un système fermé (pas d'échange de chaleur ni de matière), la fraction liquide du magma, l'activité de l'eau et la viscosité augmentent quand la pression diminue; en même temps, la température décroît légèrement. A 700°C, la viscosité est d'environ 2 ordres de grandeur plus basse qu'à 900°C. Cette propriété est en relation avec la teneur en eau plus élevée dans le liquide (sous-saturé en eau) à basse température. On peut également montrer qu'une fusion déshydratante n'est vraisemblable qu'à haute température (900°C). Aux températures plus basses, de l'eau doit être apportée de l'extérieur pour l'obtention d'un magma à 50% de liquide.

. , 720°, 820°, 920°, 8 . , 50% 50% . , , , , . . 700° 2 , 900°. ( ) . , 900°. , 50% , - .
  相似文献   
43.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   
44.
Liquidus phase relations have been experimentally determined in the systems Qz-Ab-Or-(H2O), Qz-Ab-(H2O) and Qz-Or-(H2O) at H2O-undersaturated conditions (a H2O = 0.07) and P = 5 kbar. Starting materials were homogeneous synthetic glasses containing 1 wt% H2O. The liquidus temperatures were bracketed by crystallization and dissolution experiments. The results of kinetic studies showed that crushed glasses are the best starting materials to overcome undercooling and to minimize the temperature difference between the lowest temperature of complete dissolution (melting) and the highest temperature at which crystallization can be observed. At P = 5 kbar and a H2O = 0.07, the Qz-Ab eutectic composition is Qz32Ab68 at 1095 °C (±10 °C) and the Qz-Or eutectic is Qz38Or62 at 1030 °C (±10 °C). The minimum temperature of the ternary system Qz-Ab-Or is 990 °C (±10 °C) and the minimum composition is Qz32Ab35‐ Or33. The Qz content of the minimum composition in the system Qz-Ab-Or-H2O remains constant with changing a H2O. The normative Or content, however, increases by approximately 10 wt% with decreasing a H2O from 1 to 0.07. Such an increase has already been observed in the system Qz-Ab-Or-H2O-CO2 at high a H2O and it is concluded that the use of CO2 to reduce water activities does not influence the composition of the minima in quartz-feldspar systems. The determined liquidus temperature in melts with 1 wt% H2O is very similar to that obtained in previous nominally “dry” experiments. This discrepancy is interpreted to be due to problems in obtaining absolutely dry conditions. Thus, the hitherto published solidus and liquidus temperatures for “dry” conditions are probably underestimated. Received: 27 March 1997 / Accepted: 1 October 1997  相似文献   
45.
Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.  相似文献   
46.
The water solubility in haplogranitic melts (normative composition Ab39Or32Qz29) coexisting with H2O-H2 fluids at 800 and 950 °C and 1, 2 and 3 kbar vapour pressure has been determined using IR spectroscopy. The experiments were performed in internally heated pressure vessels and the hydrogen fugacity (f H2) was controlled using the double capsule technique and oxygen buffer assemblages (WM and IW). Due to the limited lifetimes of these oxygen buffers the water solubility was determined from diffusion profiles (concentration-distance profiles) measured with IR spectroscopy in the quenched glasses. The reliability of the experimental strategy was demonstrated by comparing the results of short- and long-duration experiments performed with pure H2O fluids. The water solubility in Ab39Or32Qz29 melts equilibrated with H2O-H2 fluids decreases progressively with decreasing f H2O, as f H2 (or X H2) increases in the fluid phase. The effect of H2 on the evolution of the water solubility is similar to that of CO2 or another volatile with a low solubility in the melt and can be calculated in a first approximation with the Burnham water solubility model. Recalculation of high temperature water speciation for AOQ melts coexisting with H2O-H2 fluids at 800 °C, 2 kbar suggests that the concentrations of molecular H2O are proportional to f H2O (calculated using available mixing models), indicating Henrian behaviour for the solubility of molecular H2O in haplogranitic melts. Received: 29 June 1998 / Accepted: 10 March 1999  相似文献   
47.
Summary Pyroclastites erupted from the Upper Pollara magma chamber (13 ka, Salina Island, Aeolian Archipelago) resulted from mingling and mixing of rhyolitic and andesitic magmas. An experimental study has been conducted on the rhyolitic end-member to constrain the pre-eruptive conditions of the magma. In order to check for the role of mixing on the equilibrium phase assemblage, three different starting compositions, corresponding to three different mixing degrees, have been used. The crystallization experiments were conducted at two different oxygen fugacities and at variable temperature and fluid contents. The results indicate that the natural mineralogical assemblage can only be reproduced from a composition showing a certain degree of mixing. Assuming a pressure of 200 MPa (generally accepted for the Aeolian Islands), the pre-eruptive temperature of the magmas is estimated between 755 and 800 °C and the water content of the melt was higher than 4–4.5 wt.%. The Upper Pollara magma crystallized at relatively high fO2 (ΔlogfO2 = Ni–NiO + 1 log unit), compared to rhyolitic magmas from Lipari and Vulcano. As this difference has not been observed for the most primitive magmas the difference in fO2 could be related to different degassing processes operating in Salina and Lipari – Vulcano magmas.  相似文献   
48.
Viscosity experiments were conducted with two flux-rich pegmatitic melts PEG0 and PEG2. The Li2O, F, B2O3 and P2O5 contents of these melts were 1.04, 4.06, 2.30 and 1.68 and 1.68, 5.46, 2.75 and 2.46 wt%, respectively. The water contents varied from dry to 9.04 wt% H2O. The viscosity was determined in internally heated gas pressure vessels using the falling sphere method in the temperature range 873–1,373 K at 200 and 320 MPa pressure. At 1,073 K, the viscosity of water-rich (~9 wt% H2O) melts is in the range of 3–60 Pa s, depending on the melt composition. Extrapolations to lower temperature assuming an Arrhenian behavior indicate that highly fluxed pegmatite melts may reach viscosities of ~30 Pa s at 773 K. However, this value is a minimum estimation considering the strongly non-Arrhenian behavior of hydrous silicate melts. The experimentally determined melt viscosities are lower than the prediction of current models taking compositional parameters into account. Thus, these models need to be improved to predict accurately the viscosity of flux-rich water bearing melts. The data also indicate that Li influences significantly the melt viscosity. Decreasing the molar Al/(Na + K + Li) ratio results in a strong viscosity decrease, and highly fluxed melts with low Al/(Na + K + Li) ratios (~0.8) have a rheological behavior which is very close to that of supercritical fluids.  相似文献   
49.
W. Johannes  F. Holtz  P. M  ller 《Lithos》1995,35(3-4):139-152
The REE distributions in mesosomes, neosomes, leucosomes and melanosomes of four layered migmatites have been investigated. In one example (Arvika migmatites) the REE patterns in adjacent paragneisses, the presumed parent rock of the migmatites, were also determined. REE patterns of neosomes and mesosomes of Arvika migmatites are similar to the finegrained layers and coarse-grained layers, respectively, observed in the adjacent paragneiss. This is in agreement with the layer-by-layer paragneiss-migmatite transformation model.

The REE patterns of mesosomes and neosomes indicate that these lithologies may have been closed systems (for REE) during the formation of the migmatites. No indication of metasomatic reactions, melt segregation or injection could be detected. Within the neosomes, leucosomes are depleted and melanosomes enriched in REE contents. This is interpreted to be due to separation and concentration of accessory minerals (monazite, epidote, allanite, zircon, sphene, apatite, garnet) into the melanosomes. The behaviour of accessory minerals during migmatite formation is closely allied to that of biotite, which is also concentrated in the melanosomes.  相似文献   

50.
Small amounts of felsic, evolved plutonic rocks, often called oceanic plagiogranites, always occur as veins or small stocks within the gabbroic section of the oceanic crust. Four major models are under debate to explain the formation of these rocks: (1) late-stage differentiation of a parental MORB melt, (2) partial melting of gabbroic rocks, (3) immiscibility in an evolved tholeiitic liquid, and (4) assimilation and partial melting of previously altered dikes. Recent experimental data in hydrous MORB-type systems are used to evaluate the petrogenesis of oceanic plagiogranites within the deep oceanic crust. Experiments show that TiO2 is a key parameter for the discrimination between different processes: TiO2 is relatively low in melts generated by anatexis of gabbros which is a consequence of the low TiO2 contents of the protolith, due to the depleted nature of typical cumulate gabbros formed in the oceanic crust. On the other hand, TiO2 is relatively high in those melts generated by MORB differentiation or liquid immiscibility. Since the TiO2 content of many oceanic plagiogranites is far below that expected in case of a generation by simple MORB differentiation or immiscibility, these rocks may be regarded as products of anatexis. This may indicate that partial melting processes triggered by water-rich fluids are more common in the deep oceanic crust than believed up to now. At slow-spreading ridges, seawater may be transported via high-temperature shear zones deeply into the crust and thus made available for melting processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号