首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   2篇
  国内免费   1篇
测绘学   2篇
大气科学   20篇
地球物理   44篇
地质学   72篇
海洋学   10篇
天文学   24篇
综合类   1篇
自然地理   14篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   17篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   16篇
  2008年   13篇
  2007年   11篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有187条查询结果,搜索用时 781 毫秒
141.
We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5–9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today.  相似文献   
142.
NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 μm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1–6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the ~400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.  相似文献   
143.
NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types: (a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), (b) lobate patches with well-defined edges (nicknamed “pumpkin patches”), and (c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed “Leslie feature” first identified by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Several possible options for the composition of the orange material are investigated including, cumulate eucrite layer exposed during impact, metal delivered by impactor, olivine–orthopyroxene mixture and impact melt. Based on our analysis, the orange material on Vesta is unlikely to be metal or olivine (originally proposed by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157)). Analysis of the elemental composition of Oppia ejecta blanket with GRaND suggests that its orange material has ∼25% cumulate eucrite component in a howarditic mixture, whereas two other craters with orange material in their ejecta, Octavia and Arruntia, show no sign of cumulate eucrites. Morphology and topography of the orange material in Oppia and Octavia ejecta and orange patches suggests an impact melt origin. A majority of the orange patches appear to be related to the formation of the Rheasilvia basin. Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.  相似文献   
144.
This paper considers the phenomenon of deep core collapse in collisional stellar systems, with stars of equal mass. The collapse takes place on some multiple,  ξ−1  , of the central relaxation time, and produces a density profile in which  ρ∝ r −α  , where α is a constant. The parameters α and ξ have usually been determined from simplified models, such as gas and Fokker–Planck models, often with the simplification of isotropy. Here we determine the parameters directly from N -body simulations carried out using the newly completed GRAPE-6.  相似文献   
145.
Exsolution systems in synthetic pyroxenes were studied by transmission electron microscopy. An iron free sample En80Wo20 was prepared by devitrifying glass at 1300°C. Samples with bulk composition En50Fs30Wo20 and En35Fs38Wo27 were given various but well-defined heat treatments. The exsolution systems observed cannot unambiguously be related to the heat treatment. Periodic lamellar exsolution was observed parallel to (001) and (100) with sharp satellite reflections in the diffraction diagram. In more complex exsolution systems coarse (100) lamellae were found together with fine lamellae parallel to (001) and (100). An unusual phenomenon occurs at a (100) twin boundary where both individuals display exsolution lamellae parallel to (001). Pigeonite lamellae in one twin meet augite lamellae of the other individual at the twin boundary and vice-versa. The precise matching is achieved by a change in width near the boundary. Smoothly curved phase boundaries are developed in the obtuse angle of crosshatched (100) and (001) pigeonite lamellae in augite, whereas the boundaries in the acute angle are straight with sharp edges. This is consistent with elastic energy constraints.  相似文献   
146.
CO2 storage in geological formations is currently being discussed intensively as a technology with a high potential for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis or stochastic approaches based on a brute-force approach of repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a higher-order orthogonal basis of polynomials to approximate dependence on uncertain parameters (porosity, permeability, etc.) and design parameters (injection rate, depth, etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation, and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs with a minimum failure probability. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al., Comput Geosci 13:451–467, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speed-up by a factor of 100 compared with the Monte Carlo evaluation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of the predicted leakage rates toward higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios.  相似文献   
147.
Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.  相似文献   
148.
149.
In order to understand the groundwater dynamics and to improve the management of water resources in the Federal District of Brazil, this research proposes a 3D groundwater flow model to represent the groundwater level and flow system. The selected test site was the Pipiripau catchment. The development of the model was based on available geological, hydrogeological, geomorphological, climatological and pedological data. Geological and hydrogeological data were used to generate the 3D groundwater flow model. The 3D mesh elements of the domain were generated through the Groundwater Modeling System software, based on the logs of the well materials. The numerical simulation of the finite element method was implemented in the framework of the scientific software OpenGeoSys. With the 3D mesh-appropriated boundary conditions, annual average infiltration data and hydrogeological parameters were incorporated. Afterwards, the steady-state model was calibrated by the PEST software using available data of the water level from wells. The results showed the distribution of the steady-state hydraulic heads in the model domain, where the highest values occurred in the east and west recharge areas and the lowest values were found in the southwest of the basin. The results of this study can be a used as initial condition for the transient groundwater flow simulation and to provide a scientific basis for water resource management.  相似文献   
150.
    
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号