首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   35篇
  国内免费   8篇
测绘学   13篇
大气科学   85篇
地球物理   238篇
地质学   410篇
海洋学   45篇
天文学   119篇
综合类   1篇
自然地理   52篇
  2021年   11篇
  2020年   16篇
  2019年   11篇
  2018年   28篇
  2017年   18篇
  2016年   27篇
  2015年   28篇
  2014年   40篇
  2013年   69篇
  2012年   40篇
  2011年   51篇
  2010年   50篇
  2009年   63篇
  2008年   38篇
  2007年   34篇
  2006年   26篇
  2005年   28篇
  2004年   29篇
  2003年   19篇
  2002年   10篇
  2001年   23篇
  2000年   18篇
  1999年   7篇
  1998年   12篇
  1997年   14篇
  1996年   14篇
  1995年   16篇
  1994年   10篇
  1993年   10篇
  1991年   12篇
  1990年   10篇
  1988年   7篇
  1987年   12篇
  1986年   8篇
  1985年   6篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1974年   6篇
  1925年   4篇
  1922年   4篇
  1914年   7篇
  1913年   4篇
  1912年   4篇
  1911年   4篇
  1910年   5篇
排序方式: 共有963条查询结果,搜索用时 16 毫秒
931.
First observational evidence of harmonic radiation at microwave frequencies during solar bursts is presented for the event of April 28, 1983. The recordings between 3.1 and 19.6 GHz show a typical continuum with a spectral maximum near 5.2 GHz. Superimposed fine structures with durations in the order of some seconds exhibit a very unusual spectral behaviour. Narrow-banded intensity peaks appeared at 5.2 and 11.8 GHz which were barely visible at 3.1, 8.4 and 19.6 GHz. These structures can be interpreted as harmonic emission. Harmonic radio emission can be generated either by plasma radiation, gyroradiation, electron-cyclotron maser or by nonlinear conversion processes. However, all of those mechanisms require extreme assumptions on the source and the ambient plasma in order to account for the observations.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   
932.
Abstract A field investigation is presented of the strewnfield of the mesosiderite Vaca Muerta, originally found in 1861. The area, 11.5 km long, 2.1 km wide, is located about 60 km southeast of Taltal, Chile, in the Atacama Desert. It has yielded 80 meteorites with a total mass exceeding 3782 kg. Most fragments were found in an undisturbed state, but some had been broken by prospectors. The present studies, in connection with historical records, indicate that the original mass of Vaca Muerta exceeded 6 metric tons. One impact feature, somewhat modified by man, consists of a 10.5-m diameter, 1.7-m deep hole, without an uplifted rim. Small masses were scattered up to 85 m from the hole.  相似文献   
933.
Caliches: Large areas of the northern Sahara and the Algerian High Planes are covered by mostly 1–5 m thick caliches. Their age (Pliocene in the Sahara) decreases to the north and their precipitation is generally independent of groundwater. Their profile is composed (from top to base) as follows:
  • Upper soil, loose and mostly of eolian origin.
  • Upper part of caliche, with very characteristic, dense, partly layered-knobby texture, formed slowly by solutional and reprecipitational processes of ± freely outcropping caliches under addition of eolian material.
  • Under part of caliche, highly porous, somewhat chalky and greyish-white; precipitated mainly by capillar rise of solutions in permeable and calcareous rocks.
  • Substratum, preferentially calcareous sandstones, alluvial deposits and marls.
  • The mineralogy of the caliches (whose main components are represented in fig. 4 A-C) is rather monotonous: in addition to relicts of the substratum (partly dissolved or pushed aside by precipitation of calcite), there are only newly formed low-Mg-calcite and some quarzine (length-slow quartz). Sr-contents of calcite rise clearly from substratum to upper part of caliche. Gypsiferous Crusts (or Cementations): They are found mainly in the surroundings of Chotts (flat, ± saline lakes) and in oases of the NE-Algerian Sahara. Their formation began — mostly caused climatically — after the period of caliche formation and is still continuing in some places. Most of these gypsum-crusts are formed by evaporation of near-surface groundwaters in sandy soils. Water saturated in gypsum precipitates large crystals of gypsum (relatively low in Sr), partly filled by sand, at groundwater-surface. Fine crystalline crusts (relatively high in Sr) are formed by ascendent waters with lower gypsum content ± directly under the landsurface.  相似文献   
    934.
    Bücherschau     
    Ohne Zusammenfassung  相似文献   
    935.
    De-embankment in the salt marshes of the island of Langeoog was carried out in 2004, thereby inducing an artificial transgression within an area of 2.2 km2. Material from three suspended matter traps (SMTs) located along a N–S transect was collected monthly between January 2006 and February 2007. Besides geochemical (major and trace elements) and grain-size analyses, the duration and height of water cover were continuously measured by pressure gauges during the sampling period at two sites, thus revealing inundation frequency (max. 280 year−1) and level (max. 2.4 m). Generally, the silt-dominated SMT material exhibits a geochemical composition similar to that of suspended particulate matter from the adjacent Wadden Sea. However, distinctly increasing enrichments of TOC, P, Mn and Mo from the shoreline towards the higher salt marsh clearly indicate fractionation processes during material transport. Geochemical comparison with older Holocene coastal deposits reveals a mixture of brackish and tidal flat sediments, thus reflecting an early stage of sea-level rise and the development from a terrestrial towards a marine-dominated system. Sedimentation rates are higher than the local sea-level rise, as revealed by vertical salt marsh growth. Storm surges deliver the highest amounts of sediment and play an important role in salt marsh accumulation within the study area. Average accumulation rates of TOC (780 t year−1), P (54 t year−1) and Mn (5.2 t year−1) in the de-embanked area suggest that the former sand-dominated sediments currently receive significant amounts of reactive organic-rich material, thus fostering biogeochemical cycling.  相似文献   
    936.
    We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.  相似文献   
    937.
    The abundances of F, Cl and S in arc magmas are systematically higher than in other mantle‐derived magmas, suggesting that these elements are added from the slab along with H2O. We present ion probe microanalyses of F, Cl and S in serpentine minerals that represent the P–T evolution of the oceanic lithosphere, from its serpentinization at the ridge, to its dehydration at around 100 km depth during subduction. F, Cl and S are incorporated early into serpentine during its formation at mid‐ocean ridges, and serpentinized lithosphere then carries these elements to subduction zones. More than 50% of the F, Cl and S are removed from serpentine during the prograde metamorphic lizardite/antigorite transition. Due to the low solubility of F in water, and to the low amount of water released during this phase transition, the fluids mobilizing these elements must be dominated by SOX rather than H2O.  相似文献   
    938.
    Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star–planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from \(0.6~M_\odot \) to \(1.2~M_\odot \)) where we compute the simultaneous evolution of the star’s structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.  相似文献   
    939.
    One of the challenges when modelling a complex variable such as water temperature in rivers is that it can be difficult to determine the sources of error and to ensure that the simulations are truly representative of the reality. Therefore, a heat budget study was completed in a controlled environment, which excluded advection and bottom fluxes but enabled observation of all the other fluxes. A 21.42 m3 pool was installed and insulated to limit heat exchange through the sides and bottom. All the major energy fluxes were monitored for a 50‐day period. Different equations for individual heat budget terms were tested to determine their ability to reproduce the observations. This experiment also permitted to assess the relative importance of each component of the heat budget. Performance of each semi‐empirical equation was determined by comparing predictions and measured values. It was thus possible to choose the formulae that best represented the measured heat exchange processes, while understanding the limits of some of the semi‐empirical representations of heat exchange processes. The results highlight the importance of radiative terms into the heat budget because they controlled the major sources and sinks. The study also showed the importance of the wind function determination into the calculation of latent heat flux. The resulting water temperature model returned simulated hourly water temperature with an overall root mean square error of 0.71 °C/h and a modified Nash–Sutcliffe coefficient of 0.97. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
    940.
    For the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), the recent version of the coupled atmosphere/ocean general circulation model (GCM) of the Max Planck Institute for Meteorology has been used to conduct an ensemble of transient climate simulations These simulations comprise three control simulations for the past century covering the period 1860–2000, and nine simulations for the future climate (2001–2100) using greenhouse gas (GHG) and aerosol concentrations according to the three IPCC scenarios B1, A1B and A2. For each scenario three simulations were performed. The global simulations were dynamically downscaled over Europe using the regional climate model (RCM) REMO at 0.44° horizontal resolution (about 50 km), whereas the physics packages of the GCM and RCM largely agree. The regional simulations comprise the three control simulations (1950–2000), the three A1B simulations and one simulation for B1 as well as for A2 (2001–2100). In our study we concentrate on the climate change signals in the hydrological cycle and the 2 m temperature by comparing the mean projected climate at the end of the twenty-first century (2071–2100) to a control period representing current climate (1961–1990). The robustness of the climate change signal projected by the GCM and RCM is analysed focussing on the large European catchments of Baltic Sea (land only), Danube and Rhine. In this respect, a robust climate change signal designates a projected change that sticks out of the noise of natural climate variability. Catchments and seasons are identified where the climate change signal in the components of the hydrological cycle is robust, and where this signal has a larger uncertainty. Notable differences in the robustness of the climate change signals between the GCM and RCM simulations are related to a stronger warming projected by the GCM in the winter over the Baltic Sea catchment and in the summer over the Danube and Rhine catchments. Our results indicate that the main explanation for these differences is that the finer resolution of the RCM leads to a better representation of local scale processes at the surface that feed back to the atmosphere, i.e. an improved representation of the land sea contrast and related moisture transport processes over the Baltic Sea catchment, and an improved representation of soil moisture feedbacks to the atmosphere over the Danube and Rhine catchments.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号