首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   4篇
  国内免费   2篇
测绘学   3篇
大气科学   21篇
地球物理   46篇
地质学   74篇
海洋学   10篇
天文学   58篇
综合类   1篇
自然地理   13篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   18篇
  2012年   10篇
  2011年   9篇
  2010年   10篇
  2009年   17篇
  2008年   13篇
  2007年   11篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   6篇
  1977年   7篇
  1976年   9篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1969年   1篇
  1964年   2篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
91.
We examine the relationship between coronal hole evolution and solar active regions during the Skylab period. We find a tendency for holes to grow or remain stable when the activity nearby, seen as calcium plages and bright regions in X-rays, is predominantly large, long-lived regions. This is consistent with results of previous studies, using somewhat different methods. We also find that there is a significantly higher number of small, short-lived active regions, as indicated by X-ray bright points, in the vicinity of decaying holes than there is near other holes. We interpret this to mean that holes disappear at least in part because they become filled with many small scale, magnetically closed, X-ray emitting features. This interpretation, together with the previously reported observation that the number of X-ray bright points was much larger near solar minimum than it was during the Skylab period, provides a possible explanation for the disappearance of the large, near-equatorial coronal holes at the time of solar minimum.  相似文献   
92.
We consider proposed mechanisms for the formation of coronal holes, and identify as crucial the issue whether the holes are permeated by rigidly rotating fields. It is suggested that the interaction between such a field and the differentially rotating, diffusive solar envelope will produce a fore aft asymmetry in the distribution of fields which emerge to the photosphere. An initial study is carried out in the context of an illustrative example, and the results indicate that the asymmetry may be observed for a certain range of parameters involving the properties of the solar envelope and the characteristic size of the emerging field pattern.  相似文献   
93.
94.
X-ray images of the solar corona, taken on November 24, 1970, showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale height within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole.Since there have been several predictions that such a region should be the source of a high velocity stream in the solar wind, wind measurements for the appropriate period were traced back to the Sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.Solar wind bulk velocity and photospheric magnetic field data from the period 1962–1970 indicate the possible extension of the result to the interpretation of long term variations in the wind pattern.  相似文献   
95.
A solar flare on June 15, 1973 has been observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope on Skylab. Both morphological and quantitative analyses are presented. Some of the main results are: (a) the overall configuration of the flare is that of a compact region with a characteristic size of the order of 30 at the intensity peak, (b) this region appears highly structured inside with complex systems of loops which change during the event, (c) a brightening over an extended portion of the active region precedes the flare onset, (d) the impulsive phase indicated by the non-thermal radio emission is a period during which a rapid brightening occurs in loop structures, (e) the X-ray emission is centered over the neutral line of longitudinal magnetic field, and the brightest structures at the flare onset bridge the neutral line, (f) loop systems at successively increasing heights form during the decay phase, finally leading to the large loops observed in the postflare phase, (g) different parts of the flare show distinctly different light curves, and the temporal development given by full disk detectors is the result of integrating the different intensity vs time profiles.The implications of these observations for mechanisms of solar flares are discussed. In particular, the flux profiles of different regions of the flare give strong evidence for continued heating during the decay phase, and a multiplicity of flare volumes appears to be present, in all cases consisting of loops of varying lengths.On leave from Arcetri Astrophysical Observatory, Florence, Italy.  相似文献   
96.
In an examination of the evolution of coronal hole boundaries on a time scale of 1 day, we find that 38% of all the boundaries of coronal holes observed near central meridan passage during the Skylab period shifted in location by >1° heliocentric in 1 day. Of these boundary changes, 70% were on a scale 3 times the average supergranulation cell size. However, large-scale shifts in the boundary locations also occurred, which involved changes in the X-ray emission from these areas of the Sun. X-ray emitting structures on the borders of isolated and evolving holes were less clearly defined than those on the boundaries of well-established, elongated holes. There were generally more changes in the boundaries of the most rapidly evolving holes, but no simple relationship between the amount of change and the rate of hole growth or decay.Skylab Solar Workshop post-doctoral appointee 1975–1976. The Skylab Solar Workshops are sponsored by NASA and NSF and managed by the High Altitude Observatory, National Center for Atmosoheric Research.  相似文献   
97.
According to Parker's earlier articles in this journal the photospheric temperature is lower in sunspots than elsewhere because of increased outflow of mechanical energy, rather than inhibited inflow from the convective zone. In this case the atmosphere above the spot group receives an excess supply of energy that must equal the deficiency in radiative power output of the spot group compared with the normal photosphere. The extra power supplied to the atmosphere was then assumed to be lost by radiation. On 26 November 1973 the active region McMath 12628 was studied with sufficient precision to test for this equality. It is shown that the atmosphere did not radiate and almost certainly did not receive, more than a very small part of the missing flux of the spot group. This result is an important constraint on the plausible theories of sunspot formation.  相似文献   
98.
A four-parameter model which assumes a Gaussian dependence of both temperature and pressure on distance from center is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature T M, the maximum pressure P M= 2NMkTM, the width of the pressure distribution σ P, and the width of the temperature distribution σ T = α1/2σP. The maximum temperature T M ranges from 2.2 to 2.8 × 106K, and the maximum density N M from 2 to 9 × 109cm?3. The range of σ P is from 2 to 4 × 109 cm and that of α from 2 to 7.  相似文献   
99.
100.
The Mozambique Belt (MB) of the East Africa Orogen contains large areas of granulite-facies migmatitic gneisses with Archaean and Palaeoproterozoic protolith ages and that were recycled during the Neoproterozoic Pan-African orogeny. The study area is situated along the Great Ruaha River and within the Mikumi National Park in central Tanzania where migmatitic gneisses and mafic to intermediate granulites are interlayered with Neoproterozoic granulite-facies migmatitic metapelites. Mineral textures suggest isothermal decompression, with the peak mineral assemblage comprising Grt–Bt–Ky–Kfs–Pl–Qtz ± Phn ± Ti-Oxide ± melt and amphibolite-facies retrograde assemblage Grt–Bt–Sil–Ms–Kfs–Pl–Qtz ± Fe–Ti-Oxide. The near isothermal retrograde overprint is seen in well-developed formation of pseudomorphs after garnet. The HP granulite-facies assemblages record PT conditions of 13–14 kbar at 760–800 °C. Retrogression and the release of fluids from crystallizing melts occurred at 7 kbar and 650–700 °C. A fluid inclusion study shows three types of fluid inclusion consisting of nearly pure CO2, as well as H2O–NaCl and H2O–CO2 mixtures. We suggest that a immiscible CO2-bearing brine represents the fluid composition during high-grade peak metamorphism, and that the fluid inclusions containing H2O–NaCl or nearly pure CO2 represent trapped fluids from in situ crystallised melt. The results suggest strong isothermal decompression, which is probably related to a fast exhumation after crustal thickening in the central part of the Mozambique Belt in Tanzania.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号