首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   20篇
地球物理   43篇
地质学   72篇
海洋学   10篇
天文学   22篇
综合类   1篇
自然地理   13篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   17篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   16篇
  2008年   13篇
  2007年   11篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
141.
In interconnected microcracks, or in microcracks connected to spherical pores, the deformation associated with the passage of mechanical waves can induce fluid flow parallel to the crack walls, which is known as squirt flow. This phenomenon can also occur at larger scales in hydraulically interconnected mesoscopic cracks or fractures. The associated viscous friction causes the waves to experience attenuation and velocity dispersion. We present a simple hydromechanical numerical scheme, based on the interface-coupled Lamé–Navier and Navier–Stokes equations, to simulate squirt flow in the frequency domain. The linearized, quasi-static Navier–Stokes equations describe the laminar flow of a compressible viscous fluid in conduits embedded in a linear elastic solid background described by the quasi-static Lamé–Navier equations. Assuming that the heterogeneous model behaves effectively like a homogeneous viscoelastic medium at a larger spatial scale, the resulting attenuation and stiffness modulus dispersion are computed from spatial averages of the complex-valued, frequency-dependent stress and strain fields. An energy-based approach is implemented to calculate the local contributions to attenuation that, when integrated over the entire model, yield results that are identical to those based on the viscoelastic assumption. In addition to thus validating this assumption, the energy-based approach allows for analyses of the spatial dissipation patterns in squirt flow models. We perform simulations for a series of numerical models to illustrate the viability and versatility of the proposed method. For a 3D model consisting of a spherical crack embedded in a solid background, the characteristic frequency of the resulting P-wave attenuation agrees with that of a corresponding analytical solution, indicating that the dissipative viscous flow problem is appropriately handled in our numerical solution of the linearized, quasi-static Navier–Stokes equations. For 2D models containing either interconnected cracks or cracks connected to a circular pore, the results are compared with those based on Biot's poroelastic equations of consolidation, which are solved through an equivalent approach. Overall, our numerical simulations and the associated analyses demonstrate the suitability of the coupled Lamé–Navier and Navier–Stokes equations and of Biot's equations for quantifying attenuation and dispersion for a range of squirt flow scenarios. These analyses also allow for delineating numerical and physical limitations associated with each set of equations.  相似文献   
142.
Active Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) measurements of halogen oxides were conducted at Masaya Volcano, in Nicaragua from April 14 to 26, 2007. The active LP-DOAS system allowed night-time halogen measurements and reduced the ClO detection limit by an order of magnitude when compared to previous passive DOAS measurements, as wavelengths below 300 nm could be used for the DOAS retrievals. BrO was detected with an average BrO/SO2 molecular ratio of approximately 3 × 10−5 during the day. However, BrO values were below the detection limit of the instrument for all night-time measurements, a strong indication that BrO is not directly emitted, but rather the result of photochemical formation in the plume itself according to the autocatalytic “bromine explosion” mechanism. Despite the increased sensitivity, both ClO and OClO could not be detected. The achieved upper limits for the X/SO2 ratios were 5 × 10−3 and 7 × 10−6, respectively. A rough calculation suggests that ClO and OClO should be present at similar abundances in volcanic plumes. Since the DOAS technique is orders of magnitude more sensitive for OClO than for ClO, this indicates that OClO should always be detectable in plumes in which ClO is found. However, further LP-DOAS studies are needed to conclusively clarify the role of chlorine oxides in volcanic plumes.  相似文献   
143.
G01 New evidence for a connection between massive black holes and ULX G02 Long‐Term Evolution of Massive Black Hole Binaries G03 NBODY Meets Stellar Population Synthesis G04 N‐body modelling of real globular star clusters G05 Fokker‐Planck rotating models of globular clusters with black hole G06 Observational Manifestation of chaos in spiral galaxies: quantitative analysis and qualitative explanation G07 GRAPE Clusters: Beyond the Million‐Body Problem G08 Orbital decay of star clusters and Massive Black Holes in cuspy galactic nuclei G09 An Edge‐on Disk Galaxy Catalog G10 Complexes of open clusters in the Solar neighborhood G11 Search for and investigation of new stellar clusters using the data from huge stellar catalogues G12 Computing 2D images of 3D galactic disk models G13 Outer Pseudoring in the Galaxy G14 Where are tidal‐dwarf galaxies? G15 Ultra compact dwarf galaxies in nearby clusters G16 Impact of an Accretion Disk on the Structure of a stellar cluster in active galactic nuclei G17 Order and Chaos in the edge‐on profiles of disk galaxies G18 On the stability of OB‐star configurations in the Orion Nebula cluster G19 Older stars captured in young star clusters by cloud collapse G20 General features of the population of open clusters within 1 kpc from the Sun G21 Unstable modes in thin stellar disks G22 From Newton to Einstein – Dynamics of N‐body systems G23 On the relation between the maximum stellar mass and the star cluster mass  相似文献   
144.
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macro-fossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.  相似文献   
145.
Atmospheric rivers(ARs)are an important component of the hydrological cycle linking moisture sources in lower latitudes to the Antarctic surface mass balance.We investigate AR signatures in the atmospheric vertical profiles at the Dronning Maud Land coast,East Antarctica,using regular and extra radiosonde measurements conducted during the Year of Polar Prediction Special Observing Period November 2018 to February 2019.Prominent AR events affecting the locations of Neumayer and Syowa cause a strong increase in specific humidity extending through the mid-troposphere and a strong low-level jet(LLJ).At Neumayer,the peak in the moisture inversion(up to 4 g kg^?1)is observed between 800 and 900 hPa,while the LLJ(up to 32 m s^?1)is concentrated below 900 hPa.At Syowa the increase in humidity is less pronounced and peaks near the surface,while there is a substantial increase in wind speed(up to 40 m s?1)between 825 and 925 hPa.Moisture transport(MT)within the vertical profile during the ARs attains a maximum of 100 g kg?1 m s?1 at both locations,and is captured by both ERA-Interim and ERA5 reanalysis data at Neumayer,but is strongly underestimated at Syowa.Composites of the enhanced MT events during 2009?19 show that these events represent an extreme state of the lower-tropospheric profile compared to its median values with respect to temperature,humidity,wind speed and,consequently,MT.High temporal-and vertical-resolution radiosonde observations are important for understanding the contribution of these rare events to the total MT towards Antarctica and improving their representation in models.  相似文献   
146.
CO2 storage in geological formations is currently being discussed intensively as a technology with a high potential for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis or stochastic approaches based on a brute-force approach of repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a higher-order orthogonal basis of polynomials to approximate dependence on uncertain parameters (porosity, permeability, etc.) and design parameters (injection rate, depth, etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation, and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs with a minimum failure probability. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al., Comput Geosci 13:451–467, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speed-up by a factor of 100 compared with the Monte Carlo evaluation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of the predicted leakage rates toward higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios.  相似文献   
147.
We present new evidence for seven deep crustal, intraplate earthquakes in northern Germany, a region regarded as an area of low seismicity. From 2000 to 2018, seven earthquakes with magnitudes of ML 1.3–3.1, were detected at depths of 17.0–31.4 km. By placing the earthquake hypocentres in a geological three‐dimensional model, we can correlate two of the earthquakes with the Thor Suture, a major fault zone in this area. Five of the earthquakes group in the lower crust near the Moho, which implies that parts of the lower crust and the crust/mantle boundary in northern Germany act as a structural discontinuity on which deformation localizes. Numerical simulation implies that stress changes due to glacial isostatic adjustment most likely triggered these deep crustal earthquakes.  相似文献   
148.
Based on recent findings of a formation mechanism of substructure in tidal tails by Küpper et al., we investigate a more comprehensive set of N -body models of star clusters on orbits about a Milky Way like potential. We find that the predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up.
The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case.
We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disc shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark matter substructures in the haloes of galaxies.  相似文献   
149.
We explore how the expulsion of gas from star-forming cores due to supernova explosions affects the shape of the initial cluster mass function, that is, the mass function of star clusters when cluster infant weight-loss triggered by gas expulsion is over. We demonstrate that if the radii of cluster-forming gas ‘cores’ are roughly constant over the core mass range, as supported by observations, then more massive cores undergo slower gas expulsion. Therefore, for a given star-formation efficiency, more massive cores retain a larger fraction of stars after gas expulsion. The initial cluster mass function may thus substantially differ from the core mass function, with the final shape depending on the star-formation efficiency. A mass-independent star-formation efficiency of about 20% turns a power-law core mass function into a bell-shaped initial cluster mass function, while mass-independent efficiencies of order 40% preserve the shape of the core mass function.  相似文献   
150.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号