首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24397篇
  免费   171篇
  国内免费   916篇
测绘学   1410篇
大气科学   1977篇
地球物理   4497篇
地质学   11587篇
海洋学   1002篇
天文学   1631篇
综合类   2161篇
自然地理   1219篇
  2020年   1篇
  2018年   4761篇
  2017年   4037篇
  2016年   2576篇
  2015年   233篇
  2014年   80篇
  2013年   24篇
  2012年   988篇
  2011年   2728篇
  2010年   2014篇
  2009年   2310篇
  2008年   1888篇
  2007年   2360篇
  2006年   52篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Reservoir landslides pose a great threat to shipping safety, human lives and properties, and the operation of the hydropower station. In this paper, the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir is considered as an example to study the initiation mechanism and landslide-generated wave process of a reservoir landslide. The finite difference method and limit equilibrium analysis are used to analyze the deformation and failure characteristics of the Hongyanzi slope. Simulation results show that a large deformation (about 358 mm) happens in the shallow deposits under intermittent rainfall condition, and the slope is in a limit state. At the same time, continuous rapid drawdown of the water level (about ?0.55 m/day during 8–24 June 2015) reduced the support and accelerated the drainage of the water for the bank slope. A coupling effect of intermittent rainfall and rapid drawdown of the water level was the triggering factor of the 24 June Hongyanzi landslide. Landslide-generated wave process was simulated using a fluid–solid coupling method by integrating the general moving object collision model. Simulation results show that the landslide-generated wave is dominated by the impulse wave, which is generated by sliding masses entering the river with high speed. The maximum wave height is about 5.90 m, and the wave would decay gradually as it spreads because of friction and energy dissipation. To prevent reservoir landslides, the speed for the rising or drawdown of the water level should be controlled, and most importantly, rapid drawdown should be avoided.  相似文献   
112.
Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.  相似文献   
113.
Bogotá is located in the central Andean region of Colombia, which is frequently affected by landslide processes. These processes are mostly triggered during the rainy season in the city. This fact remarks the importance of determining what rain-derived parameters (e.g. intensity, antecedent rain, daily rain) are better related with the occurrence of landslides. For this purpose, the linear discriminant analysis (LDA), a technique derived from multivariate statistics, was used. The application of this type of analysis led to obtain simple mathematical functions that represent the probability of occurrence of landslides in Bogotá. The functions also allow to identify the most relevant variables derived from records of rainfall linked to the generation of landslides. A proof of concept using the proposed methodology was done using historic rainfall data from a 9-km2 area of homogenous climatology and geomorphology in the south part of Bogotá. Landslides needed to be grouped for the LDA. Each one of these grouping categories represents landslides that occurred in similar geomorphologic conditions. Another set of events with no landslides was generated synthetically. Results of the proof of concept show that rainfall parameters such as normalized rainfall intensity I MAP, normalized daily rainfall R MAP and rainy-days normal RDN have the best statistical correlation with the landslides observed in the zone of analysis.  相似文献   
114.
Although the 1963 Vajont Slide in Italy has been extensively studied for over 50 years, its regional geological and geomorphological context has been neglected. In this paper, we use field observations and remote sensing data to elucidate the interaction between endogenic and exogenic processes that brought the north slope of Monte Toc to failure. We present the first detailed pre- and post-failure engineering geomorphology maps of the slide area. The maps delineate two main landslide blocks, several sub-blocks, compressional and extensional zones, and secondary failures in the deposit. The maps provide new insights into the kinematics, dynamics and evolution of the slide. Finally, we discuss the origin of Vajont Gorge and a prehistoric failure that occurred at the same location as the 1963 slide. We propose, as part of a newly developed multi-stage landscape evolution sequence, that the prehistoric failure was a deep-seated gravitational slope deformation (sackung) that initiated during deglaciation and continued to slowly move until the catastrophic failure in 1963. We argue that the gorge was created by these deep-seated slow movements.  相似文献   
115.
There is a need to bridge theory and practice for incorporating parameter uncertainty in geostatistical simulation modeling workflows. Simulation workflows are a standard practice in natural resource and recovery modeling, but the incorporation of multivariate parameter uncertainty into those workflows is challenging. However, the objectives can be met without considerable extra effort and programming. The sampling distributions of statistics comprise the core theoretical notion with the addition of the spatial degrees of freedom to account for the redundancy in the spatially correlated data. Prior parameter uncertainty is estimated from multivariate spatial resampling. Simulation-based transfer of prior parameter uncertainty results in posterior distributions which are updated by data conditioning and the model domain extents and configuration. The results are theoretically tractable and practical to achieve, providing realistic assessments of uncertainty by accounting for large-scale parameter uncertainty, which is often the most important component impacting a project. A simulation-based multivariate workflow demonstrates joint modeling of intrinsic shale properties and uncertainty in estimated ultimate recovery in a shale gas project. The multivariate workflow accounts for joint prior parameter uncertainty given the current well locations and results in posterior estimates on global distributions of all modeled properties. This is achieved by transferring the joint prior parameter uncertainty through conditional simulations.  相似文献   
116.
117.
Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship (i.e., the “divergence” phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods (1952–1980 and 1981–2009), 2) three elevations (2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the current summer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.  相似文献   
118.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   
119.
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s~(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s~(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.  相似文献   
120.
As an effective livelihood approach to alleviate poverty without rural population migration, ethnic tourism has become the primary choice of economic development in ethnic areas worldwide in addition to traditional livelihood approaches. This article applies the theories of livelihood to study the community evolution driven by tourism livelihood and examine three mountainous tourism communities in different stages of tourist area life cycle. Drawing on the methods of GIS spatial analysis, semi-structured interviews and questionnaires, this article proposes a sustainable livelihood framework for ethnic tourism to explore the evolution of ethnic tourism communities by identifying changes in livelihood assets (natural, financial, social, cultural and human capitals) in the process of tourism development. The results show that the development of ethnic tourism has led to changes in the increase of building land, and the diversification of land use functions with a trend of shifting from meeting local villagers' living needs to satisfying tourists, income composition and uneven distribution of tourism income spatially. Ethnic tourism also led to the deterioration of traditional social management structure, collapse of neighboring relationship, the over- commercialization and staged authenticity of ethnic culture, as well as the gradual vanish of agricultural knowledge with a trend of increasing modern business knowledge and higher education. In addition, these changes, involving livelihood assets from natural, economic, human, social and cultural aspects are interrelated and interactive, which form new evolution characters of ethnic community. This study reveals the conflicts over livelihood approaches which have formed new vulnerabilities to impact on sustainable evolution of ethnic communities. This research provides implications for achieving the sustainable development of ethnic communities with the driving force of tourism livelihood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号