首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   3篇
  国内免费   2篇
大气科学   7篇
地球物理   51篇
地质学   56篇
海洋学   38篇
天文学   24篇
综合类   1篇
自然地理   12篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   7篇
  2009年   12篇
  2008年   9篇
  2007年   10篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1996年   7篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有189条查询结果,搜索用时 46 毫秒
171.
172.
173.
174.
This paper attempts to show analytically that the energy-input spectra of damped SDOF systems and undamped MDOF systems excited by an earthquake motion can be predicted by smoothing the Fourier amplitude spectrum of the base acceleration. The spectral window for smoothing in the frequency domain for a damped SDOF system is identical with the probability density function of the time-variant or instantaneous vibration frequency resulting from non-linear hysteresis. The spectral window for an undamped MDOF system is identical with the set of squared participation factors associated with vibration modes. It was found that the increase in damping factor and the increase in participation of higher modes provide wider spectral windows, resulting in more flattened or unaltered energy-input spectra due to enhanced smoothing effects.  相似文献   
175.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
176.
Iodine concentration and radioisotopic composition (129I/I) were measured in the pore waters from the gas hydrate occurrence in the forearc basin offshore Shimokita Peninsula, north-eastern Japan, to determine the source formation of I and accompanying hydrocarbons. Iodine concentrations correlate well with the alkalinity and SO4 patterns, reflecting degradation stages of I-rich buried organic matter, rapidly increasing in the sulfate reduction interval, and becoming constant below 250 meters below the seafloor with an upwelling flux of 1.5 × 10−11 µmol cm−2 year−1. The 129I/I ratios of 300 × 10−15–400 × 10−15 in deep pore waters suggest ages for iodine and hydrocarbon sources as old as 40 Ma. These ages correlate well with the coaly source formations of the Eocene age thought to be responsible for the conventional natural gas deposits underlying the gas hydrate stability zone. Similar profiles are observed in 129I/I ratios of pore waters in the gas hydrate stability zone from the forearc basin in the eastern Nankai Trough, offshore central Japan, where pore waters are enriched in I and reach ages as old as ∼50 Ma through the sediment column. At the outer ridge site along the trough, on the other hand, relatively younger I are more frequently delivered probably through thrusts/faults associated with subduction. The nature of source formations of I and hydrocarbons in the offshore Shimokita Peninsula has a more terrestrial contribution compared with those in the Nankai Trough, but these formations are also considerably older than the host sediments, suggesting long-term transport of I and hydrocarbons for the accumulation of gas hydrates in both locations.  相似文献   
177.
We estimate a rate of inner-core differential rotation from time variations of splitting functions of seven core modes of the Earth’s free oscillations excited by eight large earthquakes in a period of 1994–2003. The splitting functions and moment tensor elements are simultaneously determined for each core mode by a spectral fitting technique. The estimated moment tensor well agrees with Harvard CMT solution. The splitting functions are corrected for the effect of mantle heterogeneity using a 3D mantle velocity model. Inner-core rotation angle about the Earth’s spin axis is determined for each core mode as a function of event year by comparison of the corrected and reference splitting functions. Mean rotation rate of six core modes is estimated at 0.03±0.18° per year westward, and this value is insignificantly different from zero. Therefore, the inner core is not rotating at a significant rate relatively to the crust and mantle.  相似文献   
178.
Understanding of sea bottom boundary layer characteristics, especially bottom shear stress acting on the sea bed, is an important step needed in sediment transport modeling for practical application purposes. In the present study, a new generation system for bottom boundary layer under solitary wave is proposed. Applicability of this system is examined by comparing measured and numerical solution velocities. Moreover, transitional behavior from laminar to turbulence was investigated. It is concluded that the critical Reynolds number in the experiments shows good agreement with DNS result of Vittori and Blondeaux (2008) and laboratory data of Sumer et al. (2010), indicating validity of the generation system. Since the present generation system enables continuous measurement to obtain ensemble averaged quantities, it can be effectively utilized for future experimental studies on solitary wave boundary layers, including sediment transport experiments with movable bed.  相似文献   
179.
180.
The first P-arrival-time data from 513 local earthquakes were analyzed to study lateral variation of the depth to the Conrad and Moho discontinuities beneath the Chugoku and Shikoku districts, southwest Japan, as well as to determine earthquake hypocenters and P-wave station corrections. The depth to the discontinuity was estimated by minimizing the travel-time residuals of more than 8700 first P arrivals observed at 55 seismic stations. The Conrad and Moho discontinuities are located within depth ranges of 15–25 km and 30–40 km, respectively. The Moho is deeper under the mountain area than under the Seto Inland Sea area, and especially deep under the Pacific Coast of the Shikoku district and the mountain area in the Chugoku district. The depth variation of the Moho is quite similar to the Bouguer gravity anomaly distribution and the lateral variations of the P-wave velocity. The deep Moho under the southern Shikoku is located at the portion in which the continental Moho under the island arc meets the oceanic Moho that is the boundary interface between the oceanic crust and the Philippine Sea (PHS) plate dipping toward the back arc. Although there are high mountains in the northern and middle Shikoku, the Moho is not so deep because subduction of the PHS plate prevents the Moho from getting deep, while the Moho is deep due to isostatic balance under the mountain area in the Chugoku district. In addition, we indicated the possibility that the upper boundary of the oceanic crust just above the high-velocity PHS plate is in contact with the deep Moho under the western Chugoku. The contact of the Moho with the oceanic crust can explain the markedly negative gravity anomaly observed in the western Chugoku and the later phase that appears just after the first P arrival from local earthquakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号