首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   6篇
  国内免费   5篇
测绘学   4篇
大气科学   18篇
地球物理   77篇
地质学   67篇
海洋学   58篇
天文学   27篇
综合类   6篇
自然地理   24篇
  2024年   1篇
  2021年   2篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   5篇
  2016年   19篇
  2015年   6篇
  2014年   6篇
  2013年   16篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   18篇
  2008年   27篇
  2007年   10篇
  2006年   22篇
  2005年   13篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有281条查询结果,搜索用时 0 毫秒
101.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   
102.
103.
A general constitutive equation for viscoelastic behaviour of rocks and minerals with fractional-order derivative is investigated. This constitutive law is derived based on differential geometry and thermodynamics of rheology, and the fractional order of derivative represents the degree of time delay. Analyzing some laboratory experimental data of high temperature deformation of rocks and minerals such as halite, marble and orthopyroxene, we propose how to determine the orders of fractional derivative for viscoelastic behaviours of rocks and minerals. The order is related to the exponents for the temporal scaling in the relaxation modulus and the stress power-law of strain rate, i.e., the non-Newtonian flow law, and considered as an indicator representing the macroscopic behaviour and microscopic dynamics of rocks.  相似文献   
104.
We report cloudy micro- and nano-inclusions in a superdeep diamond from São-Luiz, Brazil which contains inclusions of ferropericlase (Mg, Fe)O and former bridgmanite (Mg, Fe)SiO3 and ringwoodite (Mg, Fe)2SiO4. Field emission-SEM and TEM observations showed that the cloudy inclusions were composed of euhedral micro-inclusions with grain sizes ranging from tens nanometers to submicrometers. Infrared absorption spectra of the cloudy inclusions showed that water, carbonate, and silicates were not major components of these micro- and nano-inclusions and suggested that the main constituent of the inclusions was infrared-inactive. Some inclusions were suggested to contain material with lower atomic numbers than that of carbon. Mineral phase of nano- and micro-inclusions is unclear at present. Microbeam X-ray fluorescence analysis clarified that the micro-inclusions contained transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn) possibly as metallic or sulfide phases. The cloudy inclusions provide an important information on the growth environment of superdeep diamonds in the transition zone or the lower mantle.  相似文献   
105.
We investigate the source mechanism of long-period (LP) events observed at Kusatsu–Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1–3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake.  相似文献   
106.
Highly aluminous orthopyroxene, coexisting with sapphirine, cordierite, sillimanite, quartz and garnet in various combinations, constitute granoblastic mosaic peak metamorphic assemblages in aluminous granulites from three localities in the Eastern Ghats Belt, India. Orthopyroxene contains four types of intergrowths: (a) involving sapphirine with or without cordierite, (b) involving spinel, but without sapphirine, (c) involving cordierite, but without sapphirine and spinel, and (d) involving garnet, without sapphirine, spinel or cordierite. On the basis of textural and compositional data, origin of the intergrowths is ascribed to breakdown of Mg-Tschermak component, locally also involving Fe- and Ti-Tschermak. An attempt is made to compute the “pre-breakdown” compositions of orthopyroxene by image analysis, which shows maximum Al2O3 content of 13.4 wt.% in the pristine orthopyroxene. Geothermometry, phase equilibria consideration and application of existing experimental data on alumina solubility in orthopyroxene coexisting with sapphirine and quartz, collectively indicate extreme thermal conditions of metamorphism (> 1000 °C) for the studied assemblages. This re-affirms the notion that Al2O3 solubility in orthopyroxene is the most powerful indicator of UHT metamorphism (Harley, S.L., 2004. Extending our understanding of ultrahigh temperature crustal metamorphism. J. Mineral. Petrol. Sci. 99, 140–158). The intergrowths are considered to have formed due to cooling from the thermal peak spanning a temperature range of approximately 150 °C. Appearance of diverse types of intergrowths is probably related to subtle differences in bulk composition, particularly Fe:Mg ratios.  相似文献   
107.
Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.  相似文献   
108.
We investigated responses of shallow-water benthic foraminifera to changes in climate and ocean conditions, using sediment core ASC2 from Aso-kai lagoon, central Japan. Six AMS 14C dates reveal that the studied interval corresponds to sediments deposited from ~AD 700 to 1600. Sulfur content of the bulk sediment and multi-dimensional scaling (MDS) axis 1 of fossil benthic foraminifera indicate that the composition of the benthic foraminifera community was closely related to dissolved oxygen (DO) concentration in the hypolimnion. The sulfur content and MDS axis 1 also revealed two shifts over the 900-year interval. In the first phase (~AD 700–1250), the Shannon–Wiener Index (H′), E (S200), evenness and rank abundance curve (RAC) kurtosis indicate a gradual deterioration in structure of the benthic foraminifera community. In that period, there are statistically significant correlations between the faunal composition (MDS axis 1) and faunal structure [Shannon–Wiener (H′), E (S200), evenness and RAC kurtosis]. In the second phase (~AD 1250–1600), however, faunal composition and structure show no marked correspondence. Instead, abundance of benthic foraminifera fluctuated on a scale of ~200 years. Thus, a shift in the biotic response of benthic foraminifera in Aso-kai lagoon occurred in ca. AD 1250. Gradual deterioration of benthic foraminifera, with taxonomic losses, is consistent with declining DO in the first phase, possibly associated with the increasing influence of the Tsushima Warm Current. The possibility that closure of Aso-kai lagoon and development of the sand bar affected benthic foraminifera cannot, however, be ruled out. No corresponding response was observed in the second phase, during which there was no distinct taxonomic loss. Large variations in abundance, however, were a consequence of strength of the East Asian summer and winter monsoons. The shift in the biotic response of benthic foraminifera in Aso-kai lagoon during the period AD 700–1600 was apparently a result of changes in climate and ocean conditions on the East Asian continental margin.  相似文献   
109.

Since September 2017, the Kuroshio has taken a large-meander (LM) path in the region south of Japan. We examined characteristics of the 2017–present LM path in comparison with previous LM paths, using tide gauge, altimetric sea surface height, and bottom pressure data. The 2017–present LM path was formed from a path passing through a channel south of Hachijo-jima Island, while a typical LM path originated from a path through a channel north of Miyake-jima Island. The meander trough of this atypical path was found to be shifted far to the east and to vary on a timescale of months. These characteristics are different from those of a typical LM path but they are similar to those of the 1981–1984 LM path. Therefore, we identified two types of LM path; a stable and unstable LM paths. The 2017–present unstable type large meander has a zonal scale greater than that of the 2004–2005 stable type large meander and protrudes from the eastern boundary of the Shikoku Basin, i.e., Izu-Ogasawara Ridge. No significant bottom pressure depression was observed, associated with the formation of the 2017–present LM path, indicating that baroclinic instability was not important in the formation of this LM path. Due to no significant bottom steering, even during the 2017–present LM period, a mesoscale current path disturbance occurred southeast of Kyushu, propagated eastward, and amplified the offshore displacement of the Kuroshio.

  相似文献   
110.
A dataset of historical river discharge into oceans was created using the CaMa-Flood global river routing model and adjusted runoff from the land component of JRA-55. The major rivers were well resolved with a 0.25° horizontal resolution. The total runoff on each drainage basin exhibits a distinctive bias on decadal time scales. The input runoff data were modified using 5-year low-pass-filtered multiplicative factors to fit the annual mean climatology and decadal variations in the reference dataset. The model incorporated data from 1958 to 2016. The yearly and seasonal variations of the major rivers are well represented by the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号