首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   23篇
  国内免费   19篇
测绘学   10篇
大气科学   55篇
地球物理   214篇
地质学   254篇
海洋学   241篇
天文学   135篇
综合类   4篇
自然地理   41篇
  2023年   2篇
  2021年   11篇
  2020年   11篇
  2019年   9篇
  2018年   10篇
  2017年   16篇
  2016年   29篇
  2015年   15篇
  2014年   22篇
  2013年   34篇
  2012年   25篇
  2011年   43篇
  2010年   41篇
  2009年   40篇
  2008年   45篇
  2007年   45篇
  2006年   54篇
  2005年   42篇
  2004年   64篇
  2003年   32篇
  2002年   31篇
  2001年   29篇
  2000年   19篇
  1999年   13篇
  1998年   24篇
  1997年   10篇
  1996年   20篇
  1995年   14篇
  1994年   12篇
  1993年   7篇
  1992年   10篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   12篇
  1987年   10篇
  1986年   9篇
  1985年   9篇
  1984年   20篇
  1983年   12篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   11篇
  1978年   11篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   3篇
  1973年   7篇
排序方式: 共有954条查询结果,搜索用时 15 毫秒
51.
52.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   
53.
The volume transport of the Kuroshio, the western boundary current of the North Pacific subtropical gyre, varies vigorously due to merging of disturbances propagating from the entire North Pacific. Taking into account the recirculation in the Shikoku Basin by the zonal observation line at 30°N to the west of the Izu–Ogasawara Ridge, we estimated the volume transport in the top 1,000 m layer toward the Kuroshio Extension region. The volume transport of the local recirculation gyre in the Shikoku Basin increases associated with the westward extension of the gyre, particularly in the period of the large meandering path of the Kuroshio south of Japan. Meanwhile, most of the transport variations toward the Kuroshio Extension region correspond to those of the Kuroshio transport on the continental slope south of Japan, which vary independently of those of the recirculation gyre.  相似文献   
54.
Two inverted echo sounders were maintained on coastal and offshore sides of the Kuroshio south of Japan from October 1993 to July 2004. Applying the gravest empirical mode method, we obtained a time series of geostrophic transport. Estimated transports generally agree well with geostrophic transports estimated from hydrography. Their agreement with the hydrographic transports is better than that of transports estimated from satellite altimetry data. The geostrophic transport is expressed as the surface transport per unit depth multiplied by the equivalent depth. The geostrophic transport varies mostly with the surface transport and fractionally with the equivalent depth. Seasonal variation of the geostrophic transport has a minimum in March and a maximum in September, with a range of about one fifth of the total transport.  相似文献   
55.
A pattern of slick streaks winding into a spiral, known as a spiral eddy, was identified in 5 images taken by the ERS-1/2 synthetic aperture radar (SAR) in Mutsu Bay (Japan); dynamic and kinematic models of these spiral eddies have been proposed. Common characteristics of the five spiral eddies are: 1) an eddy diameter of about 15 km; 2) their location in the western part of the bay; and 3) their cyclonic direction of rotation. Moreover, the wind conditions over the bay were common: prior to acquiring the images, a strong easterly wind continued blowing for more than one day. The wind field on the bay is known to be orographically steered and has strong windstress vorticity, which generates cyclonic circulation. The diameter and location of the circulation simulated with a numerical ocean model corresponded well to those of the identified spiral eddies. Based on these facts, we propose a dynamic model for the movement of a slick streak, and a kinematic model for the formation of a spiral eddy. We have assumed calm air, a microlayer and seawater with a cyclonic circulation in the dynamic model. The balance of forces is established in the microlayer among the frictional force from the seawater, the frictional force from the calm air, the gravitational force, and the Coriolis force. As a result, the velocity vector of the microlayer deflects slightly towards the center of the cyclonic circulation. We have assumed a point source of the microlayer in the kinematic model. The shapes of a slick streak simulated with the models agree well with the identified patterns in the SAR images.  相似文献   
56.
Our analysis of the last three decades of retrospective data of vertical distributions and size composition of chlorophyll-a (Chl-a) over the western North Pacific has revealed significant changes of three indices related to Chl-a during summer season, as follows: (1) decreasing linear trend of the proportion of Chl-a in surface layer to that of the whole water column by 0.4 and 2.3% year−1 in the subtropical area along 137°E (STA137) during 1972 to 1997 and in the Kuroshio Extension area along 175°E (KEA175) during 1990 to 2001; (2) increasing linear trend of the depth of subsurface Chl-a maximum (DCM) by 0.4 and 2.6 m year−1 in STA137 and KEA175; and (3) decreasing linear trend of larger-size Chl-a (>3 μm) by 0.1 and 2.5% year−1 in STA137 and KEA175, respectively. Water density (σ θ ) at 75 m depth had also decreased by 0.006 and 0.05 year−1 in STA137 and KEA175, respectively. The ratio of biogenic opal to biogenic CaCO3 in the sinking flux decreased by 0.015 year−1 in the subtropical region from 1997 to 2005. These findings may indicate that the subsurface chlorophyll maximum is deepening and larger phytoplankton such as diatoms has been decreasing during the past decade, associated with the decreasing density of surface water caused by warming in the western North Pacific, especially in the summer.  相似文献   
57.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   
58.
Vesicomyid bivalves have a substantial biomass in deep-sea chemosynthetic biological communities in the Pacific. Using a novel multiplex-PCR (mPCR) method to identify the co-occurring vesicomyids in Sagami Bay, we analyzed the distribution of Calyptogena okutanii and Calyptogena soyoae along environmental gradients. All the known distributions of C. okutanii indicated the different preferences in salinity and temperature to those of C. soyoae, and in Sagami Bay, depth seemed to be an important environmental factor, too. Although the concentration of hydrogen sulfide in sediment was not examined, our results showed that the distributions of these two Calyptogena clams were affected by salinity and temperature.  相似文献   
59.
With full-depth LADCP velocity data collected in a wide area southeast of Kyushu, Japan, large velocity currents, occasionally exceeding 15 cm s?1, were observed in a thick, 500–1,500 m, near-homogeneous density layer below approximately 3,000 m depth around the steep topographies. The currents were found not to flow along the topographic contours, and to be strongly ageostrophic. The directions of the bottom-layer currents are rather related with phase of the semi-diurnal tides, suggesting deeply intruded internal tides generated at the steep topographies.  相似文献   
60.
Carbon capture and storage (CCS) methods, either sub-seabed or in ocean depths, introduces risk of CO2 leakage and subsequent interaction with the ecosystem. It is therefore important to obtain information on possible effects of CO2. In situ CO2 exposure experiments were carried out twice for 10 days during 2005 using a Benthic Chamber system at 400 m depth in Storfjorden, Norway. pCO2 in the water above the sediment in the chambers was controlled at approximately 500, 5000 and 20,000 μatm, respectively. This article describes the experiment and the results from measured the biological responses within the chamber sediments. The results show effects of elevated CO2 concentrations on biological processes such as increased nanobenthos density. Methane production and sulphate reduction was enhanced in the approximately 5000 μatm chamber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号