首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  国内免费   2篇
测绘学   2篇
大气科学   11篇
地球物理   17篇
地质学   15篇
海洋学   31篇
天文学   33篇
自然地理   4篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   3篇
  2002年   9篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
61.
Abstract Extensional basin formation and subsequent basin inversion in the southern area of the eastern margin of the Japan Sea were studied on the basis of the interpretation of seismic profiles (total length approximately 15 000 km) and the fossil analyses of 77 sea-bottom samples. Rift (Early to Early Middle Miocene), post-rift (Middle to Late Miocene), pre-inversion (Late Miocene to Pliocene) and inversion stages (Pliocene to Quaternary) were differentiated by the extension and contraction of the crust. Many small-scale rifts were formed in the Sado Ridge and the Mogami Trough during the rift stage, simultaneous with back-are spreading of the Japan Sea. Most of the rifts were east- or southeast-facing, rotational half-grabens bounded by west-dipping normal faults at their eastern boundaries. The syn-rift sequence can be divided into lower and upper units by an erosional surface. The sequences are presumed to be composed mainly of fining-upward sediments. The trend of most rifts is north-northeast with the remainder being of east-northeast-bias. The north-northeast trending rifts are distributed widely in the Sado Ridge and Mogami Trough and do not show an en échelon arrangement, suggesting that they were formed mainly by pure extension nearly perpendicular to the arc. The east-northeast trending rifts are presumed to have been developed by a north-northwest extension in the late rift stage, which may have accompanied a right-lateral movement in the eastern margin of the Japan Sea. During the post-rift stage, the rifts and adjacent horsts subsided and became covered by the post-rift sequence, characterized by parallel and continuous reflections. This suggested no significant tectonic movements in this period. In the pre-inversion stage many of the rifts subsided again, presumably because of down-warping due to weak compressional stress. The normal faults reactivated as reverse faults during the inversion stage due to an increase in compressional stress. Many of the rifts have been uplifted and transformed into east-vergent asymmetric anticlines. The basin inversion is greatest in the Sado Ridges and in the Dewa Bank Chain, while it is least developed in the Mogami Trough and in the western slope of the Sado Ridge, in which some normal faults have not been reactivated. The increase and decrease of the inversion corresponds to the peak and trough of undulation at an interval of about 50 km trending parallel to the arc.  相似文献   
62.
In the real world, there are many kinds of phenomena that are represented by points on a network, such as traffic accidents on a street network. To analyse these phenomena, the basic point pattern methods (i.e. the nearest neighbour distance method, the quadrat method, the K-function method and the clumping method) defined on a plane (referred to as the planar basic point pattern methods) are extended to the basic point pattern methods on a network (referred to as the network basic point pattern methods). However, like the planar basic point pattern methods, the network basic point pattern methods assume a uniform network and this assumption is hard to accept when analysing actual phenomena. To overcome this limitation, this paper formulates a transformation, called the uniform network transformation, that transforms a non-uniform network into a uniform network. This transformation provides a simple procedure for analysing point patterns on non-uniform networks: first, a given non-uniform network is transformed into a uniform network; second, the network basic point pattern methods (which assume a uniform network) are applied to this transformed uniform network. No modification to the network basic point pattern methods is necessary. The paper also shows an actual application of this transformation to traffic accidents in Chosei, Japan.  相似文献   
63.
Effect of fault bend on the rupture propagation process of stick-slip   总被引:1,自引:0,他引:1  
An experimental study of stick-slip is performed to examine the effect of a fault bend on the dynamic rupture propagation process. A granite sample used in the experiment has a pre-cut fault that is artificially bent by an angle of 5.6° at the center of the fault along strike, and accordingly the fault consists of two fault segments. The rupture propagation process during stick-slip instability is investigated by analyzing the records of shear strain and relative displacement measured with strain gauge sensors together with the hypocenters of AE (acoustic emission) events detected with piezoelectric transducers. The observed rupture propagation process of typical stick-slip events is as follows. (1) The dynamic rupture started on a fault segment is stopped near the fault bend. (2) The rupture propagation is restarted near the bend on the other fault segment 10.8 ms to 3.5 s after the stop of the first rupture. The delay time of the second rupture decreases with an increase in the slip amount of the first rupture or a decrease in the normal stress acting on the fault segment where the second rupture started. (3) The restarted rupture is not arrested by the presence of a fault bend, and slip occurs over the entire fault. We theoretically analyze the stress concentration near the fault bend to find that the normal stress produced by the preceding slip near the fault bend plays an important part in controlling the rupture propagation. A numerical simulation based on a rate- and state-dependent friction law is performed to interpret physically the retarded rupture in the experiment. The observed time interval of 10.8 ms to 3.5 s between the first rupture and the second is explained by the numerical simulation, suggesting that the rate- and state-dependence of rock friction is a possible mechanism for the retarded rupture on the fault.  相似文献   
64.
We reanalyze the propagation of one-dimensional small-amplitude disturbances of given real frequency ω in a radiating and scattering grey medium using the Eddington approximation, which has been studied previously by us (Kaneko et al., 1976). Numerical results reveals three frequency regimes to be distinguished, and two wave modes always appear in each frequency regime. The governing equations and analytic solutions are derived for all wave modes using Whitham's method modified into quadratic form and approximate methods based on radiation thermodynamics. In the high-frequency regime appear the radiation-wave and adiabatic sound modes, which are damped by opacity and radiative cooling, respectively. Wave patterns in the intermediate-frequency and low-frequency regimes depend critically on the importance of radiation, for which the criterion is given in terms of the ratio of total specific heats at constant pressure and constant volume. When the radition overwhelms the matter (radiation-dominated case), the radiative mode in the intermediate-frequency regime is the constant-volume diffusion mode. When the matter overwhelms the radiation (matter-dominated case), damped radiation-wave and damped radiation-diffusion modes newly appear between the radiation-wave and constant-volume diffusion modes. The acoustic mode in the intermediate-frequency regime is the isothermal sound mode,which is damped by radiative cooling at higher frequencies and by radiation-thermal drag force at lower frequencies. Two modes appearing in the low-frequency regime are the isentropic radiation-acoustic and constant-pressure diffusion modes. The absorption coefficient derived for the former is shown to be a radiation-thermodynamic extension of that of Landau and Lifshitz (1987). The transition frequencies between all adjacent two modes are also derived to discuss the implications of them. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
65.
How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex’s track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex’s center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.  相似文献   
66.
It is known that slow baryon outflow influences the evolution of dwarf spheroidals (dSphs) around the Milky Way. However, one may ask: what dSphs are too small? Actually, the depth of the gravitational potential of very small dSphs discovered recently is estimated as the energy of only one supernova explosion. This means that the loss of interstellar medium should be fast. Then, adopting a dSph formation scenario, which considers the fast baryon loss, we investigate which mass loss is important. According to our estimates, when only baryon mass loss is considered, the observational radius is larger than that expected in that scenario for all of the very small dSphs. This indicates that the expansion of the system is caused by slow dark matter outflow.  相似文献   
67.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   
68.
A long-term spin-up and a subsequent interannual simulation are conducted for the ocean–ice component of the climate model intercomparison project (CMIP)-class earth system model of the Japan Meteorological Agency/Meteorological Research Institute. This experiment has three purposes: first is to assess the ability of our model with the Coordinated Ocean–ice Reference Experiments (COREs) forcing in reproducing the present ocean-climate; second is to understand the ocean-climate variability for the past 60 years; third is to present an example of evaluating an ocean–ice interannual variability simulation. The Pacific Ocean is focused on for the last two purposes. After integrating for about 1500 years with repeated use of a detrended CORE interannual forcing, the model reaches a quasi-steady state where the present climate is reproduced satisfactorily. Then, the interannual variability simulation is conducted with the retrieved forcing trend and the result is analyzed. The simulation is successful at reproducing the long-term variability in the Pacific and surrounding oceans. Brief analyses of the tropical and mid-latitude upper layer, deep circulation, and the Arctic sea ice are presented. A caveat in treating other parts of the globe is due to the recent intense convection in the Southern Ocean caused by a remarkably increasing trend of the Southern Hemisphere westerly. Overall, the current simulation with our CMIP-class ocean–ice model is shown to be useful for studying the present ocean-climate variability, specifically in the Pacific sector. It could also be used as a benchmark control experiment that facilitates further research, model development, and intercomparison.  相似文献   
69.
The effects of large-scale wind forcing on the bimodality of the Kuroshio path south of Japan, the large meander (LM) and non-large meander (NLM), were studied by using a historical simulation (1948–2007) with a high-resolution Ocean general circulation models (OGCM). The Kuroshio in this simulation spent much time in the NLM state, and reproduced several aspects of its long-term path variability for the first time in historical OGCM simulation, presumably because the eddy kinetic energy was kept at a moderate level. By using the simulated fields, the relationships between wind forcing (or Kuroshio transport) and path variation proposed by past studies were tested, and specific roles of eddies in those variations were investigated. The long-term variation of the simulated net Kuroshio transport south of Japan was largely explained by the linear baroclinic Rossby wave adjustment to wind forcing. In the simulated LM events, a triggering meander originated from the interaction of a wind-induced positive sea surface height (SSH) anomaly with the upstream Kuroshio and was enlarged by cyclonic eddies from the recirculation gyre. The cyclonic eddy of the trigger meander was followed by a sizable anticyclonic eddy on the upstream side. Subsequently, a weak (strong) Kuroshio favored the LM (NLM). The LM tended to be maintained when the Kuroshio transport off southern Japan was small, and increasing Kuroshio transport promoted decay of an existing LM. The supply of disturbances from upstream, which is related to the wind-induced SSH variability at low latitudes, contributed to the maintenance of an existing LM.  相似文献   
70.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号