首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
地球物理   21篇
地质学   20篇
海洋学   11篇
天文学   9篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
11.
Samples of damage-zone granodiorite and fault core from two drillholes into the active, strike-slip Nojima fault zone display microstructures and alteration features that explain their measured present-day strengths and permeabilities and provide insight on the evolution of these properties in the fault zone. The least deformed damage-zone rocks contain two sets of nearly perpendicular (60–90° angles), roughly vertical fractures that are concentrated in quartz-rich areas, with one set typically dominating over the other. With increasing intensity of deformation, which corresponds generally to increasing proximity to the core, zones of heavily fragmented rock, termed microbreccia zones, develop between prominent fractures of both sets. Granodiorite adjoining intersecting microbreccia zones in the active fault strands has been repeatedly fractured and locally brecciated, accompanied by the generation of millimeter-scale voids that are partly filled with secondary minerals. Minor shear bands overprint some of the heavily deformed areas, and small-scale shear zones form from the pairing of closely spaced shear bands. Strength and permeability measurements were made on core collected from the fault within a year after a major (Kobe) earthquake. Measured strengths of the samples decrease regularly with increasing fracturing and fragmentation, such that the gouge of the fault core and completely brecciated samples from the damage zone are the weakest. Permeability increases with increasing disruption, generally reaching a peak in heavily fractured but still more or less cohesive rock at the scale of the laboratory samples. Complete loss of cohesion, as in the gouge or the interiors of large microbreccia zones, is accompanied by a reduction of permeability by 1-2 orders of magnitude below the peak values. The core samples show abundant evidence of hydrothermal alteration and mineral precipitation. Permeability is thus expected to decrease and strength to increase somewhat in active fault strands between earthquakes, as mineral deposits progressively seal fractures and fill pore spaces.  相似文献   
12.
The Yonaguni Knoll IV hydrothermal vent field (24°51′N, 122°42′E) is located at water depths of 1370–1385 m near the western edge of the southern Okinawa Trough. During the YK03–05 and YK04–05 expeditions using the submersible Shinkai 6500, both hydrothermal precipitates (sulfide/sulfate/carbonate) and high temperature fluids (Tmax = 328°C) presently venting from chimney‐mound structures were extensively sampled. The collected venting fluids had a wide range of chemistry (Cl concentration 376–635 mmol kg?1), which is considered as evidence for sub‐seafloor phase separation. While the Cl‐enriched smoky black fluids were venting from two adjacent chimney‐mound structures in the hydrothermal center, the clear transparent fluids sometimes containing CO2 droplet were found in the peripheral area of the field. This distribution pattern could be explained by migration of the vapor‐rich hydrothermal fluid within a porous sediment layer after the sub‐seafloor phase separation. The collected hydrothermal precipitates demonstrated a diverse range of mineralization, which can be classified into five groups: (i) anhydrite‐rich chimneys, immature precipitates including sulfide disseminations in anhydrite; (ii) massive Zn‐Pb‐Cu sulfides, consisting of sphalerite, wurtzite, galena, chalcopyrite, pyrite, and marcasite; (iii) Ba‐As chimneys, composed of barite with sulfide disseminations, sometimes associated with realgar and orpiment overgrowth; (iv) Mn‐rich chimneys, consisting of carbonates (calcite and magnesite) and sulfides (sphalerite, galena, chalcopyrite, alabandite, and minor amount of tennantite and enargite); and (v) pavement, silicified sediment including abundant native sulfur or barite. Sulfide/sulfate mineralization (groups i–iii) was found in the chimney–mound structure associated with vapor‐loss (Cl‐enriched) fluid venting. In contrast, the sulfide/carbonate mineralization (group iv) was specifically found in the chimneys where vapor‐rich (Cl‐depleted) fluid venting is expected, and the pavement (group v) was associated with diffusive venting from the seafloor sediment. This correspondence strongly suggests that the subseafloor phase separation plays an important role in the diverse range of mineralization in the Yonaguni IV field. The observed sulfide mineral assemblage was consistent with the sulfur fugacity calculated from the FeS content in sphalerite/wurtzite and the fluid temperature for each site, which suggests that the shift of the sulfur fugacity due to participation of volatile species during phase separation is an important factor to induce diverse mineralization. In contrast, carbonate mineralization is attributed to the significant mixing of vapor‐rich hydrothermal fluid and seawater. A submarine hydrothermal system within a back‐arc basin in the continental margin may be considered as developed in a geologic setting favorable to a diverse range of mineralization, where relatively shallow water depth induces sub‐seafloor phase separation of hydrothermal fluid, and sediment accumulation could enhance migration of the vapor‐rich hydrothermal fluid.  相似文献   
13.
Field Emission SEM (FESEM) textural observations, crystal size distribution (CSD) analyses, UV-excited luminescence imaging, and photoluminescence (PL) microspectroscopy excited by 488 nm laser were conducted on two texturally contrasting samples of carbonado, a kind of natural polycrystalline diamond from the Central African Republic (CAR). The investigated carbonado samples A and B show extremely different textures: sample A is made up of faceted crystals accompanied by abundant, small rectangular pores, whereas sample B has a granular texture with coarser crystals and scarce, large pores. Diamond crystals smaller than 2–3 µm are enriched in sample A but depleted in sample B. These textural features indicate that sample B diamonds were annealed under thermodynamically stable P–T conditions. The pore characteristics indicate that fluid permeability was higher for sample A than sample B. Photoluminescence (PL) spectra indicate that samples A and B correspond to Group A and B carbonados in the classification of Kagi et al. (1994), respectively, so that sample A reveals emissions from the H3 center without any N–V0 derived emission at 575 nm, whereas sample B shows emissions from the 3H center and the N–V0 defect. In addition, UV-excited luminescence images and photoluminescence spectra for sample B indicate that the rims of diamond crystals within several microns of a pore show luminescence features similar to those of Group AB carbonados (Kagi et al., 1994), indicating that this Group AB material was formed from Group B by irradiation from pore-filling, radioactive-element-bearing materials at a low temperature. The extent of the low-temperature irradiation is considered to depend on fluid permeability, and the Group A material was strongly irradiated due to its permeable texture whereas the Group B material was not significantly irradiated due to its less permeable granular texture. These results indicate that Group B carbonados have retained their original PL spectral features produced under high pressures and temperatures at mantle depths.  相似文献   
14.
We report cloudy micro- and nano-inclusions in a superdeep diamond from São-Luiz, Brazil which contains inclusions of ferropericlase (Mg, Fe)O and former bridgmanite (Mg, Fe)SiO3 and ringwoodite (Mg, Fe)2SiO4. Field emission-SEM and TEM observations showed that the cloudy inclusions were composed of euhedral micro-inclusions with grain sizes ranging from tens nanometers to submicrometers. Infrared absorption spectra of the cloudy inclusions showed that water, carbonate, and silicates were not major components of these micro- and nano-inclusions and suggested that the main constituent of the inclusions was infrared-inactive. Some inclusions were suggested to contain material with lower atomic numbers than that of carbon. Mineral phase of nano- and micro-inclusions is unclear at present. Microbeam X-ray fluorescence analysis clarified that the micro-inclusions contained transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn) possibly as metallic or sulfide phases. The cloudy inclusions provide an important information on the growth environment of superdeep diamonds in the transition zone or the lower mantle.  相似文献   
15.
We present evidence for strong hydrothermal activity in the eastern Manus Basin (depth: 1700–2100 m), the existence of large scale triple-layered buoyant plumes at depths of 1100 m (“shallow plume”), 1700 m (“deep plume”), and 1400 m (“middle plume” with less extent than the other two plumes) that were revealed from water column anomalies of CH4, Mn, Al and pH observed in November to December 1990. Judging from the horizontal distribution of these parameters, the deep plume seems to originate from two distinct hydrothermal sites (eastern and western sites) in the research area, the eastern site being visually ascertained with deep-tow observations at the same time. The CH4/Mn ratio (mol mol−1) of the deep plume (0.02–0.05) is the lowest yet observed in hydrothermal plumes. The order of magnitude difference of CH4/Mn ratios between the shallow plume and the deep plume suggests that different kinds of fluid-rock interaction occurred to make the hydrothermal end members for the deep and shallow plumes. The shallow plume, which had an areal extent of more than 50 km, may be an episodic “megaplume”, because it was not recognized in the previous CH4 profiles in 1986, and because it has a similar CH4/Mn ratio as the megaplume observed in the North Fiji Basin. We found that the eastern deep plume is characterized by enormously high aluminium concentrations (0.6– 1.5 μmol kg−1), pH anomalies (0.1) and high Al/Mn ratios (10–17). The endmember fluid for the eastern deep plume may have an unusually low pH value to dissolve this much aluminum during fluid-rock interaction, or this plume may originate from an eruption-influenced fluid.  相似文献   
16.
The major elements and the minor elements cadmium, chromium and vanadium in 12 samples of shallow-water deposits collected in Tokyo Bay were studied. Average silica content of the deposits is 53.93%, which is approximate to the average of 54.15% of red clay. Iron (av. 5.67% Fe2O3), titanium (av. 0.71% TiO2), especially manganese (av. 0.87% MnO), are more abundant in the deposits than in the deposits along the entire sea-coasts of Honshu and of Nanao Bay, Japan. The deposits show higher contents of cadmium (av. 0.61 ppm), the chromium (av. 86 ppm) and vanadium (av. 79ppm). About 3 to 17 times cadmium and manganese contents compared with those in the deposits along the sea-coasts of Honshu and of Nanao Bay, Japan was found. Such accumulation, of cadmium and manganese in the deposits is probably caused by artificial contamination rather than of natural origin. No relation was found between the contents of cadmium, chromium and vanadium and those of major elements.  相似文献   
17.
Two silicate grains (RB‐QD04‐0049 and RA‐QD02‐0064, whose estimated masses are 0.050 μg and 0.048 μg, respectively) recovered from the asteroid Itokawa by the Hayabusa spacecraft were studied for their mineralogical characteristics by synchrotron X‐ray diffraction and synchrotron X‐ray microtomography and further analyzed for their bulk chemical compositions by instrumental neutron activation analysis (INAA). According to X‐ray tomography, RB‐QD004‐0049 is composed of olivine, high‐Ca pyroxene, plagioclase, Ca‐phosphate, and troilite, whereas RA‐QD002‐0064 entirely consists of olivine. INAA data are consistent with these mineral compositions except for rare earth elements (REEs). Although the grain RB‐QD004‐0049 contains measurable REEs, which seems to be consistent with the presence of Ca‐phosphate, their abundances are anomalously high. Very low abundance of Co implies less than 0.1 mass% of metals in these two grains by calculation, which is in contrast to the result for the previously analyzed grain RA‐QD02‐0049 (Ebihara et al., 2011). FeO/Sc ratios of the grains fall within the range of those for ordinary chondrite olivines, implying that these grains are extraterrestrial in origin. FeO/MnO ratios also confirm this conclusion and further suggest that the Hayabusa grains analyzed in this study are similar to material found in LL chondrites rather than CK chondrites although olivines from LL and CK chondrites have similar Fa# (molar% of Fe relative to [Fe+Mg] in olivine) (~30) to those of the Hayabusa grains including the two grains analyzed in this study.  相似文献   
18.
The Hayabusa mission to asteroid 25143, Itokawa, brought back 2000 small particles, which most closely resemble material found in LL4‐6 chondrites. We report an 40Ar/39Ar age of 1.3 ± 0.3 Ga for a sample of Itokawa consisting of three grains with a total mass of ~2 μg. This age is lower than the >4.0 Ga ages measured for 75% of LL chondrites but close to one for Y‐790964 and its pairs. The flat 40Ar/39Ar release spectrum of the sample suggests complete degassing 1.3 Ga ago. Recent solar heating in Itokawa's current orbit does not appear likely to have reset that age. Solar or impact heating 1.3 Ga ago could have done so. If impact heating was responsible, then the 1.3 Ga age sets an upper bound on the time at which the Itokawa rubble pile was assembled and suggests that rubble pile creation was an ongoing process in the inner solar system for at least the first 3 billion years of solar system history.  相似文献   
19.
Kenshiro  Otsuki  Takayuki  Uduki  Nobuaki  Monzawa  Hidemi  Tanaka 《Island Arc》2005,14(1):12-21
Abstract   The fractality of fault zones of thickness T for the 248-m-long core from a borehole penetrating the northern segment of the seismic Chelungpu Fault, Taiwan, was analyzed. The frequency curve of T shows that the fractal dimension is normal when T is smaller than a characteristic thickness T c, and it becomes abnormally large when T exceeds T c. The fractal dimensions of size and spatial distributions of T increase as the mean distribution density of T increases, which is inconsistent with the evolution laws for ordinary brittle faults. This discrepancy implies that the thickening rate of T when T is more than T c is not constant, but a decreasing function of fault displacement. The slow thickening rate is related to the elastohydrodynamic lubrication which was effective on the fault when T exceeds T c. This slip instability mechanism can explain the large, fast and smooth slip on the northern segment of the Chelungpu Fault during the 1999 Chi-Chi earthquake.  相似文献   
20.
Kenshiro  Otsuki  Takayuki  Uduki  Nobuaki  Monzawa  Hidemi  Tanaka 《Island Arc》2005,14(1):22-36
Abstract   The seismic slip that occurred during the 1999 Chi-Chi earthquake in Taiwan showed contrastive behaviors in different regions along the Chelungpu Fault: A large and smooth slip occurred in the north, while a relatively small slip associated with high-frequency seismic wave radiation occurred in the south. The core samples from shallow boreholes at northern (Fengyuan) and southern (Nantou) sites penetrating the seismic Chelungpu Fault were analyzed. The fault zones at the northern site are characterized by soft clayey material associated with clayey injection veins. This suggests that the fault zones were pressurized during ancient seismic slip events, and hence the elastohydrodynamic lubrication occurred effectively. In contrast, the fault rock from the southern site is old pseudotachylyte that has been shattered by repeated ancient seismic slip events. Statistical analysis of many pseudotachylyte fragments reveals that the degree of frictional melting tended to be low. In this case, the seismic slip is restrained by the mechanical barrier of a highly viscous melt layer. These contrastive fault rocks were produced by repeated ancient seismic slip events, but the two corresponding mechanisms of friction are likely to have also occurred during the 1999 Chi-Chi earthquake, thus causing the contrastive slip behaviors in the north and south.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号