首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   4篇
  国内免费   3篇
测绘学   11篇
大气科学   29篇
地球物理   79篇
地质学   135篇
海洋学   20篇
天文学   53篇
综合类   1篇
自然地理   20篇
  2019年   3篇
  2017年   3篇
  2016年   13篇
  2014年   4篇
  2013年   17篇
  2012年   5篇
  2011年   10篇
  2010年   12篇
  2009年   14篇
  2008年   11篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1990年   4篇
  1989年   8篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   11篇
  1979年   7篇
  1978年   9篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1971年   4篇
  1970年   5篇
  1969年   3篇
  1968年   5篇
  1965年   3篇
  1962年   3篇
  1948年   3篇
  1923年   2篇
  1905年   2篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
101.
102.
103.
A small particle (ca. 10?6 g) was magnetically separated from a Ca,Al-rich inclusion of the Allende meteorite. By using instrumental neutron activation analysis it was found that the elements Os, W, Re, Ir, Mo, Ru and Pt were enriched by a mean factor of about 7000 relative to Cl chondrites.A polished section of the grain showed that it consisted mainly of silicates, with a rounded particle of metal and sulfide (20 μm across) attached to it.Concentrations of up to 11% Pt were determined with the microprobe in the Ni-Fe center of the particle. Furthermore, Rh was for the first time measured in an Allende inclusion. It is enriched in about the same degree as Pt, Ir and W. The Ni-Fe center was surrounded by troilite. Mo was concentrated in the sulfide, while Os and Ru were inhomogeneously distributed over the metal + sulfide phases. The particle is interpreted as direct product of metal condensation of the solar nebula. The sulfide phase formed at lower temperatures and caused redistribution of the refractory siderophile elements. Condensation calculations for a metal alloy show that Fe and Ni are expected to be already present at higher temperatures than the condensation temperatures of pure Fe. Pt and Rh, having lower condensation temperatures than pure Fe should also be completely condensed above the condensation temperature of pure Fe. Kinetic considerations show that minimum times to grow this kind of particle should be of the order of 500 years at 10?3 atm.  相似文献   
104.
105.
106.
In July 2007, phosphorus input by an upwelling event along the east coast of Gotland Island and the response of filamentous cyanobacteria were studied to determine whether introduced phosphorus can intensify cyanobacterial bloom formation in the eastern Gotland Basin. Surface temperature, nutrient concentrations, phytoplankton biomass and its stoichiometry, as well as phosphate uptake rates were determined in two transects between the coasts of Gotland and Latvia and in a short grid offshore of Gotland. In the upwelling area, surface temperatures of 11–12 °C and average dissolved inorganic phosphorus (DIP) concentrations of 0.26 μM were measured. Outside the upwelling, surface temperatures were higher (15.5–16.6 °C) and DIP supplies in the upper 10 m layer were exhausted. Nitrite and nitrate concentrations (0.01–0.22 μM) were very low within and outside the upwelling region. Abundances of filamentous cyanobacteria were highly reduced in the upwelling area, accounting for only 1.4–6.0% of the total phytoplankton biomass, in contrast to 18–20% outside the upwelling. The C:P ratio of filamentous cyanobacteria varied between 32.8 and 310 in the upwelling region, most likely due to the introduction of phosphorus-depleted organisms into the upwelling water. These organisms accumulate DIP in upwelling water and have lower C:P ratios as long as they remain in DIP-rich water. Thus, diazotrophic cyanobacteria benefit from phosphorus input directly in the upwelling region. Outside the upwelling region, the C:P ratios of filamentous cyanobacteria varied widely, between 240 and 463, whereas those of particulate material in the water ranged only between 96 and 224. To reduce their C:P ratio from 300 to 35, cyanobacteria in the upwelling region had to take up 0.05 mmol m−3 DIP, which is about 20% of the available DIP. Thus, a larger biomass of filamentous cyanobacteria may be able to benefit from a given DIP input. As determined from the DIP uptake rates measured in upwelling cells, the time needed to reduce the C:P ratio from 300 to 35 was too long to explain the huge bloom formations that typically occur in summer. However, phosphorus uptake rates increased significantly with increasing C:P ratios, allowing phosphorus accumulation within 4–5 days, a span of time suitable for bloom formation in July and August.  相似文献   
107.
Abstract— In earlier studies, the 65‐75 km diameter Siljan impact structure in Sweden has been linked to the Late Devonian mass extinction event. The Siljan impact event has previously been dated by K‐Ar and Ar‐Ar chronology at 342‐368 Ma, with the commonly quoted age being 362.7 ± 2.2 Ma (2 s?, recalculated using currently accepted decay constants). Until recently, the accepted age for the Frasnian/Famennian boundary and associated extinction event was 364 Ma, which is within error limits of this earlier Siljan age. Here we report new Ar‐Ar ages extracted by laser spot and laser step heating techniques for several melt breccia samples from Siljan (interpreted to be impact melt breccia). The analytical results show some scatter, which is greater in samples with more extensive alteration; these samples generally yield younger ages. The two samples with the least alteration yield the most reproducible weighted mean ages: one yielded a laser spot age of 377.2 ± 2.5 Ma (95% confidence limits) and the other yielded both a laser spot age of 376.1 ± 2.8 Ma (95% confidence limits) and a laser stepped heating plateau age over 70.6% 39Ar release of 377.5 ± 2.4 Ma (2 s?). Our conservative estimate for the age of Siljan is 377 ± 2 Ma (95% confidence limits), which is significantly different from both the previously accepted age for the Frasnian/Famennian (F/F) boundary and the previously quoted age of Siljan. However, the age of the F/F boundary has recently been revised to 374.5 ± 2.6 Ma by the International Commission for Stratigraphy, which is, within error, the same as our new age. However, the currently available age data are not proof that there was a connection between the Siljan impact event and the F/F boundary extinction. This new result highlights the dual problems of dating meteorite impacts where fine‐grained melt rocks are often all that can be isotopically dated, and constraining the absolute age of biostratigraphic boundaries, which can only be constrained by age extrapolation. Further work is required to develop and improve the terrestrial impact age record and test whether or not the terrestrial impact flux increased significantly at certain times, perhaps resulting in major extinction events in Earth's biostratigraphic record.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号