This review describes significant developments in trace element determination using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) that were reported in 2004 and 2005. It focuses on the application of ICP techniques to geological and environmental samples; fundamental studies in ICP-MS and ICP-AES instrumentation are not included. The literature reviewed indicated that the majority of new publications concerned advances in ICP-MS analysis rather than ICP-AES. However, ICP-AES developments are still being published, particularly in the areas of sample preconcentration and sample introduction. The trend in increasing publication of developments in hyphenated speciation techniques looks set to persist as knowledge of elemental speciation becomes critical for many environmental studies. Collision or reactions cells were the most reported technique for spectral interference removal in ICP-MS, probably reflecting the growing adoption of cell instruments in laboratories during the last few years. 相似文献
The low detection limits and multi‐element capability of inductively coupled plasma‐mass spectrometry (ICP‐MS) makes it an attractive option in a wide range of environmental, medical, biological, industrial and archaeological applications. Quadrupole ICP‐MS is used to determine element concentrations in a diverse range of sample types, often very different from the geological applications for which ICP‐MS was originally developed. Whilst modern instruments are robust and capable of a high degree of automation, it is essential that users of both instrumentation and data are aware of the strengths and limitations of the technique. Many people who are now involved with the operation and application of ICP‐MS instruments are not specialists in the field, as was usually the case amongst early operators. This back‐to‐basics review is aimed at the novice user and includes a guide to ICP‐MS instrumentation and performance. Whilst solids, liquids and gases can all be measured by ICP‐MS, discussion of sample introduction is limited to liquids. Requirements for producing good quality data, including aspects of sample preparation, calibration, and methods of interference limitation are also discussed. 相似文献
Sediment dwelling macrofauna (infauna) are important vectors for the transfer of sediment-associated contaminants to higher trophic levels. Sedimenting organic matter constitutes an important food source for all benthic organisms and changes seasonally in terms of quantity and quality. Sediment organic matter (SOM) quality affects organism activity and feeding behaviour, and is therefore also likely to affect contaminant fate in benthic systems. We investigated the impact of SOM quality (enrichment with either labile Tetraselmis sp. or refractory lignin) on the accumulation and metabolism of sediment-associated pyrene in Nereis diversicolor (Annelida) and Amphiura filiformis (Echinodermata), as well as the combined effect of SOM quality and infaunal bioturbation on pyrene distribution and metabolism in the sediment. After 45 d of exposure, SOM quality almost doubled pyrene bioaccumulation in both species, while pyrene metabolism remained unaffected. Metabolites comprised approximately 80% of the total tissue pyrene in N. diversicolor and approximately 40% in A. filiformis. A. filiformis arms contained one fifth of the disk pyrene concentration. Approximately 20% of the pyrene found in A. filiformis arms was found to be covalently bound to, e.g. DNA, RNA or proteins, thus reducing pyrene bioavailability to arm-cropping predators. The sedimentary pyrene distribution and metabolism was species-dependent, but correlated poorly with prevailing knowledge on species-specific bioturbation patterns. This was attributed to the comparably high biodegradability of the contaminant thus altering its sorptive characteristics and function as inert tracer. Subduction of pyrene and metabolites occurred, and the fraction of pyrene covalently bound to SOM increased with depth, thereby removing pyrene from the bioavailable pool. Our results imply that bioaccumulation and trophic transfer of sediment-associated PAH should increase following fresh organic matter input, e.g. after sedimentation of phytoplankton blooms. We stress the importance of considering behavioural characteristics of infauna and the trophic situation of the system when assessing fate and effects of sediment-associated contaminants. 相似文献
The building-up of the Andean Range is linked to the subduction of the Pacific lithosphere beneath the South American plate. However, the formation of the Central Andes is marked by continental crustal shortening, whereas accretion and underplating of exotic oceanic terranes occurred in the northern Andes. The study of various magmatic and metamorphic rocks exhumed in the Western Cordillera of Ecuador by Miocene transpressive faults enables us to constrain the nature and thermal evolution of the crustal root of this part of Ecuador. These rocks are geochemically similar to oceanic plateau basalts. The thermobarometric peak conditions of a granulite and an amphibolite indicate temperatures of 800–850?°C and pressures less than 6–9 kbar (lack of garnet). The abnormally high geothermal gradient (≈40?°C?km?1) is probably due to the activity of the magmatic arc, which developed on the accreted oceanic terranes after Late Eocene times, and may have provoked the re-mobilisation of deeply underplated oceanic material during the genesis of the Neogene to Recent arc. To cite this article: É. Beaudon et al., C. R. Geoscience 337 (2005).相似文献
The impact of dietary and water exposure on the accumulation and distribution of cadmium (Cd) in subcellular components of the polychaete Capitella sp. I was investigated. Worms were exposed to either dissolved Cd alone ('Water-Only' treatments; WO) or diet-bound Cd alone ('Algae-bound Only' treatments; AO). Thus, WO worms were starved and AO worms were fed. Differential centrifugation was used to fractionate worm homogenates into debris- (DE), mitochondrial- (MI), microsomal- (MC) and cytosolic- (CY) fractions, and the concentration of Cd in these fractions was quantified by radiometric analysis using the specific activity of the (109)Cd radioisotope. Neither exposure route nor Cd exposure affected the total protein content in the worms. However, fed, but not starved worms relocated proteins from the mitochondria to the cytosol in response to Cd exposure. In systems without Cd addition, starvation likewise influenced the distribution of protein between mitochondria and cytosol. Cutaneous uptake and accumulation of Cd from the water was related to surface area while dietary uptake was influenced by the amount of sediment passing through the gut. Irrespective of exposure route, Cd was accumulated primarily in the debris fraction although comparisons between the treatments indicated that relatively less Cd was located in DE and more in MI, MC and CY fractions in worms in AO compared to worms in WO. Cd per unit protein in DE and MI fractions was twice as high as in MC and CY fractions in WO, whereas MC contained the highest Cd content followed by MI, DE and CY fractions in AO worms. Our results stress the importance of exposure route for the internal distribution and toxicity of Cd to deposit feeders such as Capitella sp. I. 相似文献
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit).
Picrites have LREE-depleted patterns, high Ndi and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their Ndi are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower Nd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan–Multitud Unit by higher Pb ratios and lower Ndi.
The Ecuadorian and Gorgona 88–86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92–86 Ma Mg-rich basalts of the Caribbean–Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68–65 Ma). 相似文献
RésuménUne analyse tectonique du couloir faillé d’Arakapas est menée à partir de la mesure de plus de 3 000 plans striés relevés dans les formations ophiolitiques du Troodos et du Kellaki. Des mesures ont également été effectuées dans les formations du Crétacé terminal — Paléogène et du Néogène, afin de préciser l’âge des différents stades de la déformation. Elles ont été traitées par les méthodes des dièdres droits et du calcul du tenseur des contraintes. Il est montré que le couloir d’Arakapas a été le siège de plusieurs déformations successives. Au Néogène règne un régime en extension qui succède à un jeu décrochant dextre contemporain des compressions d’âge Crétacé terminal à Miocène. Un jeu décrochant antérieur peut-être mis en évidence. Il serait compatible avec le fonctionnement en faille transformante océanique proposé par divers auteurs. 相似文献