首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1769篇
  免费   73篇
  国内免费   4篇
测绘学   63篇
大气科学   332篇
地球物理   440篇
地质学   629篇
海洋学   43篇
天文学   247篇
综合类   1篇
自然地理   91篇
  2021年   25篇
  2020年   28篇
  2019年   19篇
  2018年   58篇
  2017年   54篇
  2016年   83篇
  2015年   72篇
  2014年   74篇
  2013年   117篇
  2012年   47篇
  2011年   62篇
  2010年   81篇
  2009年   80篇
  2008年   43篇
  2007年   60篇
  2006年   58篇
  2005年   34篇
  2004年   28篇
  2003年   43篇
  2002年   41篇
  2001年   33篇
  2000年   33篇
  1999年   31篇
  1998年   24篇
  1997年   32篇
  1996年   21篇
  1995年   34篇
  1994年   32篇
  1993年   20篇
  1992年   17篇
  1991年   25篇
  1990年   25篇
  1988年   14篇
  1987年   15篇
  1984年   17篇
  1983年   26篇
  1982年   13篇
  1981年   13篇
  1980年   13篇
  1979年   14篇
  1978年   19篇
  1976年   14篇
  1975年   15篇
  1974年   17篇
  1973年   20篇
  1972年   15篇
  1970年   14篇
  1969年   12篇
  1968年   12篇
  1965年   14篇
排序方式: 共有1846条查询结果,搜索用时 31 毫秒
911.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   
912.
The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by the Solar Submilimeter Telescope (SST) and microwaves (1 – 18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments onboard satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and γ-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterparts only in the higher energy X- and γ-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were difficult to be reconciled with a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.  相似文献   
913.
A number of X-ray instruments have been active in observing the solar coronal X-ray radiation this decade. We have compared XSM observations with simultaneous GOES and RHESSI observations. We present flux calibrations for all instruments and compare XSM and GOES total emission measures (TEM) and temperatures (T).  相似文献   
914.
The Einstein Gravity Explorer mission (EGE) is devoted to a precise measurement of the properties of space-time using atomic clocks. It tests one of the most fundamental predictions of Einstein’s Theory of General Relativity, the gravitational redshift, and thereby searches for hints of quantum effects in gravity, exploring one of the most important and challenging frontiers in fundamental physics. The primary mission goal is the measurement of the gravitational redshift with an accuracy up to a factor 104 higher than the best current result. The mission is based on a satellite carrying cold atom-based clocks. The payload includes a cesium microwave clock (PHARAO), an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground. The tick rates of the clocks are continuously compared with each other, and nearly continuously with clocks on earth, during the course of the 3-year mission. The highly elliptic orbit of the satellite is optimized for the scientific goals, providing a large variation in the gravitational potential between perigee and apogee. Besides the fundamental physics results, as secondary goals EGE will establish a global reference frame for the Earth’s gravitational potential and will allow a new approach to mapping Earth’s gravity field with very high spatial resolution. The mission was proposed as a class-M mission to ESA’s Cosmic Vision Program 2015–2025.
S. SchillerEmail:
  相似文献   
915.
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth.
Wei-Tou NiEmail:
  相似文献   
916.
We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars flyby on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.  相似文献   
917.
Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator of the open-telescope technology without need of vacuum, now pursued in the German GREGOR. Important ingredients for this technology are primary beam completely open to natural wind flow, stiff but still open design by principal stiff overall geometries in combination with carefully designed joints and completely open-foldable dome constructions based on tensioned strong cloth. Further developments to large sizes are made within the framework of the design study for a European Solar Telescope (EST).  相似文献   
918.
This paper investigates the impact of weak synoptic-scale forcing on the thermally induced valley-wind circulation in the Alpine Inn Valley and one of its largest tributaries, the Wipp Valley. To this end, high-resolution numerical simulations with realistic topography but idealized large-scale atmospheric conditions are performed. The large-scale flow has a speed increasing linearly from 5 m s?1 at sea level to 12.5 m s?1 at tropopause level, but its direction is varied between each experiment. For reference, an experiment without large-scale winds is conducted as well. The results indicate that the sensitivity to ambient flow forcing differs substantially between the Inn Valley and the Wipp Valley. The valley-wind circulation of the Inn Valley is found to be fairly robust against weak ambient forcing, changing by a much smaller amount than the along-valley component of the imposed large-scale flow. The valley wind tends to be intensified (weakened) when the ambient flow is aligned with (opposite to) the local valley orientation. However, the flow response is complicated by larger-scale interactions of the ambient flow with the Alpine massif. Most notably, northerly and northwesterly flow is deflected around the Alps, leading to the formation of a low-level jet along the northern edge of the Alps which in turn affects the valley-wind circulation in the lower Inn Valley. For the Wipp Valley, which is oriented approximately normal to the Alpine crest line and constitutes a deep gap in the Alpine crest, two distinctly different flow regimes are found depending on whether the large-scale flow has a significant southerly component or not. In the absence of a southerly flow component, the valley-wind circulation is similarly robust against ambient forcing as in the Inn Valley, with a fairly weak response of the local wind speeds. However, southerly ambient flow tends to force continuous downvalley (southerly) wind in the Wipp Valley. The flow dynamics can then be described as a pressure-driven gap flow during the day and as a mixture between katabatic flow and gap flow during the night. The responsible pressure forcing arises from the larger-scale interaction of the ambient flow with the Alpine massif, with southerly flow causing lifting on the southern side of the Alps and subsidence in the north.  相似文献   
919.
920.
A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号