首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1713篇
  免费   62篇
  国内免费   23篇
测绘学   34篇
大气科学   119篇
地球物理   395篇
地质学   535篇
海洋学   177篇
天文学   380篇
综合类   5篇
自然地理   153篇
  2021年   16篇
  2020年   20篇
  2019年   32篇
  2018年   34篇
  2017年   32篇
  2016年   48篇
  2015年   35篇
  2014年   39篇
  2013年   95篇
  2012年   47篇
  2011年   77篇
  2010年   64篇
  2009年   80篇
  2008年   80篇
  2007年   78篇
  2006年   81篇
  2005年   47篇
  2004年   48篇
  2003年   49篇
  2002年   50篇
  2001年   61篇
  2000年   55篇
  1999年   32篇
  1998年   41篇
  1997年   38篇
  1996年   24篇
  1995年   31篇
  1994年   21篇
  1993年   21篇
  1992年   20篇
  1991年   11篇
  1990年   24篇
  1989年   20篇
  1988年   20篇
  1987年   25篇
  1986年   20篇
  1985年   14篇
  1984年   23篇
  1983年   21篇
  1982年   14篇
  1981年   24篇
  1980年   13篇
  1979年   31篇
  1978年   21篇
  1977年   19篇
  1976年   13篇
  1975年   11篇
  1973年   9篇
  1972年   9篇
  1969年   9篇
排序方式: 共有1798条查询结果,搜索用时 15 毫秒
41.
42.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   
43.
D T Tudor  A T Williams 《Area》2006,38(2):153-164
Questionnaires were completed by 2306 beach users at 19 Welsh beaches with respect to beach selection parameters. The modal group of respondents was female aged 30–39. Beach choice was primarily determined by clean litter-free sand and seawater, followed by safety. Refreshment facilities and beach awards were deemed minor considerations by the public when choosing a beach to visit. Approximately 58 per cent of respondents were aware of beach award and rating schemes. Of coastal visitors interviewed for this paper, 67 per cent rated a beach as 'important' or 'very important' to their holiday, with just 2 per cent replying that they were unimportant.  相似文献   
44.
45.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   
46.
47.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
48.
The Legs Lake shear zone marks the southeastern boundary of an extensive region (>20,000 km2) of high-pressure (0.8–1.5+ GPa) granulite-facies rocks in the western Churchill Province, Canada. The shear zone is one of the largest exhumation-related structures in the Canadian Shield and coincides with the central segment of the ∼2,800 km long Snowbird tectonic zone. The movement history of this shear zone is critical for the development of models for the exhumation history of the high-pressure region. We used electron microprobe U–Th–Pb dating of monazite with supplemental ID-TIMS U–Pb geochronology to place constraints on the timing of shear zone activity. Combining these and other data, we suggest that regional exhumation occurred during at least three distinct phases over an ∼150 million year period. The first phase involved high temperature decompression from ∼1.0 to 0.8–0.7 GPa shortly following 1.9 Ga peak metamorphism, possibly under an extensional regime. The second phase involved rock uplift and decompression of the hanging wall to 0.5–0.4 GPa during east-vergent thrusting across the Legs Lake shear zone at ca. 1.85 Ga. This phase was likely driven by early collision-related convergence in the Trans-Hudson orogen. The final phase of regional exhumation, involving the removal of 15–20 km of overburden from both footwall and hanging wall, likely occurred after ∼1.78 Ga and may have been related to regional extensional faulting.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
49.
New geochronological, isotopic and geochemical data for a spectacular swarm of deep crustal migmatitic mafic dikes offer important insight into processes operative during 1.9 Ga high pressure, high temperature metamorphism along the Snowbird tectonic zone in northern Saskatchewan. High-precision U–Pb zircon dates reveal anatexis of Chipman mafic dikes at 1,896.2 ± 0.3 Ma during syntectonic and synmetamorphic intrusion at conditions of 1.0–1.2 GPa, >750°C. U–Pb zircon dates of 1,894–1,891 Ma for cross-cutting pegmatites place a lower bound on major metamorphism and deformation at the currently exposed crustal levels. The persistence of elevated temperatures for ~14 m.y. following peak conditions is implied by younger U–Pb titanite dates, and by Sm–Nd whole rock isotopic data that suggest the derivation of the pegmatites by melting of a mafic source. Limited melting of the host felsic gneiss at 1.9 Ga despite high temperature is consistent with evidence for their previous dehydration by granulite facies metamorphism in the Archean. Spatial heterogeneity in patterns of mafic dike and tonalitic gneiss anatexis can be attributed to lateral peak temperature and compositional variability. We correlate 1,896 Ma Chipman mafic dike emplacement and metamorphism with substantial 1.9 Ga mafic magmatism over a minimum along-strike extent of 1,200 km of the Snowbird tectonic zone. This suggests a significant, continent-wide period of asthenospheric upwelling that induced incipient continental rifting. Extension was subsequently terminated by hinterland contraction associated with Trans-Hudson accretion and orogenesis. Little activity in the lower crust for ca. 650 m.y. prior to Proterozoic metamorphism and mafic magmatism implies an extended interval of cratonic stability that was disrupted at 1.9 Ga. This episode of destabilization contrasts with the record of long-term stability in most preserved cratons, and is important for understanding the lithospheric characteristics and tectonic circumstances that control the destruction or survival of continents.  相似文献   
50.
In this letter we develop a new concept, the negative alpha filter, which we suggest has application for quantitative estimation of surface parameters beneath vegetation using polarimetric synthetic aperture radar (SAR) interferometry (POLInSAR). We first derive the filter and then validate it using simulations of L-band coherent forest scattering. We then show initial results of applying the filter to airborne data from the German Aerospace Center's E-SAR L-band sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号