首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   20篇
  国内免费   1篇
测绘学   9篇
大气科学   24篇
地球物理   114篇
地质学   132篇
海洋学   40篇
天文学   77篇
综合类   1篇
自然地理   86篇
  2023年   4篇
  2022年   3篇
  2021年   11篇
  2020年   8篇
  2019年   10篇
  2018年   19篇
  2017年   14篇
  2016年   14篇
  2015年   13篇
  2014年   15篇
  2013年   23篇
  2012年   12篇
  2011年   24篇
  2010年   20篇
  2009年   40篇
  2008年   22篇
  2007年   23篇
  2006年   18篇
  2005年   13篇
  2004年   14篇
  2003年   16篇
  2002年   9篇
  2001年   17篇
  2000年   7篇
  1999年   5篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1985年   4篇
  1983年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1973年   4篇
  1972年   6篇
  1971年   3篇
  1970年   3篇
  1969年   4篇
  1968年   7篇
  1967年   2篇
排序方式: 共有483条查询结果,搜索用时 0 毫秒
181.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. If protostars are formed individually within a cluster before falling together and interacting, there should be no preferred orientation for such interactions. As star formation within clusters is believed to be coeval, it is probable that, during interactions, both protostars possess massive, extended discs.   We have used an SPH code to carry out a series of simulations of non-coplanar disc–disc interactions. We find that non-coplanar interactions trigger gravitational instabilities in the discs, which may then fragment to form new companions to the existing stars. (This is different from coplanar interactions, in which most of the new companion stars form after material in the discs has been swept up into a shock layer, and this then fragments.) The original stars may also capture each other, leading to the formation of a small- N cluster. If every star undergoes a randomly oriented disc–disc interaction, then the outcome will be the birth of many new stars and substellar objects. Approximately two-thirds of the stars will end up in multiple systems.  相似文献   
182.
Fatty acids are generally the most abundant lipid molecules in plankton, and thus play a central role in the cycling of organic matter in the upper ocean. These fatty acids are primarily derived from intact polar diacylglycerolipids (IP-DAGs), which compose cell membranes in plankton. The molecular diversity of IP-DAGs in the upper ocean remains to be fully characterized, and the advent of high performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) approaches have now provided the opportunity to readily analyze IP-DAGs from marine planktonic communities. We used HPLC/ESI-MS to determine the concentrations of three classes of phospholipids (phosphatidlyglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC)), three classes of betaine lipids (diacylglyceryl trimethylhomoserine (DGTS), diacylglyceryl hydroxymethyl-trimethyl-β-alanine (DGTA), and diacylglyceryl carboxyhydroxymethylcholine (DGCC)), and three classes of glycolipids (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG)) in plankton filtered (>0.2 μm) from seawater collected within the euphotic zone of the eastern South Pacific. The distributions of these IP-DAGs along the cruise transect provided important new insights on their tentative planktonic sources. Complementary data from our cruise, a principle components analysis of our IP-DAG concentrations, observed fatty acid compositions of IP-DAG classes and published IP-DAG distributions in pure cultures of plankton suggest that heterotrophic bacteria were the dominant sources of PG and PE, while MGDG and SQDG originated primarily from Prochlorophytes. The origins of the other classes of IP-DAGs were less clear, although it is likely that PC, DGTS, DGTA, and DGCC were derived primarily from eukaryotic phytoplankton. The molecular distributions of fatty acids attached to the different classes of IP-DAGs were generally distinct from one another, and suggest that reported distributions of total fatty acids (as analyzed by gas chromatography) in the literature should be regarded as homogenized mixtures of distinct molecular pools of fatty acids.  相似文献   
183.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   
184.
Five sites located on a bathymetric transect of the distal Demerara Rise were studied by ODP Leg 207. Albian sediments of essentially terrigenous nature (clay, siltstone, sandstone) are the oldest drilled stratigraphic levels and form apparently the top of the synrift sequence. They are overlain by Cenomanian to Santonian finely laminated black shales, rich in organic matter of marine origin, which accumulated on a thermally subsiding ramp. Early Campanian hiatuses are thought to be the result of final disjunction of Demerara Rise (South America) from Africa and the onset of deep water communication between the two Atlantic basins (south and central). The overlying Uppermost Cretaceous–Oligocene chalk includes rich and diversified calcareous plankton assemblages, as well as two radiolarian-rich intervals (Late Campanian and Middle Eocene). A complex erosional surface developed during the Late Oligocene–Early Miocene. Sedimentation was impeded since then on the intermediate and deep sites of Demerara Rise, possibly due to the action of deep submarine currents. To cite this article: T. Danelian et al., C. R. Geoscience 337 (2005).  相似文献   
185.
The results of a thermoluminescence (TL) dating and geochemical survey of loessic deposits in southeast England, involving sampling at 26 localities, demonstrate that the loessic deposits appear to be the product of at least three depositional phases of aeolian silt during the Late Pleistocene, namely 10-25 ka BP, 50–125 ka BP and > 170 ka BP. The majority of localities sampled date to the Late Devensian, but isolated pockets of older material were found throughout the area. The majority of the samples analysed were of decalcified material. The results of geochemical analyses of major oxide and trace element concentrations indicate the uniformity of material and suggest a common provenance.  相似文献   
186.
187.
188.
It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key role in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars.   We have carried out a series of simulations of star–disc interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism.   A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars and substellar objects. When the disc spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20 per cent of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically triggered star formation, then new companions are formed in approximately 50 per cent of encounters.  相似文献   
189.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号