首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   53篇
  国内免费   1篇
测绘学   15篇
大气科学   47篇
地球物理   243篇
地质学   300篇
海洋学   97篇
天文学   256篇
综合类   5篇
自然地理   145篇
  2023年   6篇
  2021年   16篇
  2020年   17篇
  2019年   17篇
  2018年   28篇
  2017年   26篇
  2016年   40篇
  2015年   30篇
  2014年   26篇
  2013年   54篇
  2012年   39篇
  2011年   37篇
  2010年   47篇
  2009年   59篇
  2008年   41篇
  2007年   43篇
  2006年   42篇
  2005年   37篇
  2004年   54篇
  2003年   36篇
  2002年   34篇
  2001年   35篇
  2000年   25篇
  1999年   13篇
  1998年   21篇
  1997年   18篇
  1996年   9篇
  1995年   13篇
  1994年   12篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   10篇
  1989年   8篇
  1987年   8篇
  1985年   11篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1981年   12篇
  1980年   11篇
  1979年   15篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   7篇
  1972年   8篇
  1969年   5篇
  1968年   7篇
排序方式: 共有1108条查询结果,搜索用时 437 毫秒
821.
The vertical distributions of copecod nauplii and water properties were sampled at well-mixed and stratified sites on Georges Bank using a pumping system, CTD and in vivo fluorometer during a four day period in late May 1992. At each stratified station at least one sample was taken within the thermocline and the fluorescence maximum, which usually co-occurred. Well-mixed sites had low average concentrations of nauplii, ca 41−1, and showed little variation of abundance with depth. Stratified sites had from 4 to 16 times the integrated (0–50 m) abundance of nauplii compared to well-mixed sites and showed strong vertical patterns of distribution. Maximum concentrations of nauplii, up to 1601−1, were associated with the thermocline at 7 of the 9 stratified stations. At the two remaining stratified sites the naupliar maximum was in the upper mixed layer, sampled at 5 m depth. The encounter rate between early feeding cod (Gadus morhua) larvae and their naupliar prey was calculated with and without turbulence. Turbulence was estimated from two sources: wind stress in the upper layer (calculated from wind observations during our cruise) and tidal shear in the lower layer (estimated initially from a tidal mixing equation). We ultimately replaced the lower layer estimates with turbulence data from a series of measurements made in 1995. The latter are more robust and had the advantage of providing dissipation rates for the pycnocline as well as the lower layer. Theory predicts an increase in encounters between a predator and its prey with the addition of turbulence parameters into standard models of encounter. We combined turbulence profiles with the vertical distribution of nauplii to examine the potential contribution of turbulent kinetic energy to predator-prey encounter rates at various depths in stratified and mixed water columns. Our calculations suggest the following increases due to turbulence at stratified sites on Georges Bank during our cruise: from 34 to 219% in the upper mixed layer, depending on wind speed and depth; approximately 8% in the pycnocline; and approximately 110% below the pycnocline. Mixed sites experience increases of at least 110% (tide only), but greater increases (118–192% in this study) occur when the wind blows because of the combined (spatially overlapped) effects of wind and tidal mixing at these sites. The absolute values for encounter rates and their modification by turbulence are sensitive to a number of assumptions in the models. We used a series of stated assumptions to generate estimates that range from 0.6 to 26.5 prey h−1, depending on geographical location, physical forcing and depth.  相似文献   
822.
823.
824.
825.
826.
Laboratory experiments indicate that colloidal Fe is aggregated in estuarine waters by a second-order kinetic mechanism. The corresponding rate coefficient is proportional to the square of the salinity. A simple theoretical formulation is presented to describe the distribution of Fe in an estuary, based on observed second-order kinetics. The distribution depends on a single parameter whose value may be determined from measurements of the physical characteristics of the estuary. The theoretical expression accurately predicts observed distributions of Fe in a variety of estuaries, suggesting general applicability.  相似文献   
827.
Sixteen amorphous carbon (lampblack) samples that had been exposed to Xe127 and pumped for >9 hrs to remove the most labile gas were examined by etching with HNO3, for comparison with the release pattern of meteoritic xenon. Samples originally exposed at 100–200°C lost 90% of their Xe very readily, when the surface had been etched to a mean depth of only ~0.2 Å. This suggests that the Xe is adsorbed mainly at rare sites that are unusually reactive to HNO3. The adsorbed Xe survived several months' storage in vacuum, but on exposure to air, part of it was lost within a few hours, while the remainder persisted without measurable exchange. Samples exposed at 800–1000°C had a similar adsorbed component, as well as a second, tightly bound component extending to a mean depth of up to 30 Å; this component had apparently diffused into the carbon during exposure. The (microscopic) diffusion coefficient for graphitic crystallites is 5 × 10?20 cm2/sec at 1000°C.PVDC carbon lost its adsorbed Xe at about the same rate as lampblack on exposure to air or HNO3, though it differs from lampblack in being non-graphitizable and more porous. It had only a small diffused component, however.The most tightly bound part of the Xe adsorbed on lampblack resembles planetary Xe in most characteristics: surface siting, etchability, persistence in vacuum, and lack of exchange with atmospheric Xe. The Xe concentrations—if interpreted as equilibrium distribution coefficients—are some 106× too small to account for meteoritic Xe, but it appears that equilibrium had not been reached by any of the samples, even after 1 day's exposure to Xe. If the uptake of Xe is controlled by rate rather than equilibrium, then the high noble gas concentrations in meteorites may simply reflect the much longer uptake times in the solar nebula. It seems likely that the trapping mechanisms discussed here can also explain two other features: elemental fractionations of noble gases, and the close correlation between planetary Xe and CCFXe.  相似文献   
828.
829.
During 1970, it was occasionally feasible to collect sublimate from directly above the lava fountain in the crater of Mauna Ulu on the east rift zone of Kilauea Volcano, when the level of the lava pool had dropped within the crater. Collecting equipment was suspended down the steep wall to a position above the fountain. Collections were made on quartz wool held within open-ended quartz tubes and, for silica detection, on stainless steel wool in a stainless steel tube. The main components in the sublimate were, in order of decreasing concentration for the best sample, Na, Ca, Al, Fe, Mg, K, B, Si, Ti, Zn, H+, NH4+, Cu, Ni in the form of sulfates, chlorides and fluorides.In order to investigate the forms in which the sublimate ions occur under different conditions of temperature and oxidation, the equilibrium compositions of the compounds most likely to be present were calculated. This was done for those important components for which thermodynamic data are available, using a computer program to calculate the minimum free energy for the mixture. The results indicate that, for primary conditions of high temperature and low oxygen partial pressure, the halides were the most likely form of the metallic compounds. Particulate sulfates appear under increasing oxidizing conditions caused by the access of air. These conclusions were reinforced by collections made from holes drilled through the thin crust of a lava lake formed during the same eruption.  相似文献   
830.
Several different reasonably concordant methods of estimating the flux of carbonaceous chondrite and cometary material (both meteoric dust and comet nuclei) through the inner solar system are shown to imply that such sources may have a dominant effect on the present abundances of several important constituents of the atmosphere of Venus. In particular, the entire supply of hydrogen compounds on Venus may owe its origin to infall of such material. The escape rate of atomic hydrogen may be in approximate balance with the influx rate of hydrogen in the forms of bound meteoritic water and cometary ices. I suggest that the atmospheric inventories of H, S, Cl, F and possibly N on Venus are provided by infall, and need not be endogenous to Venus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号