首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   53篇
  国内免费   1篇
测绘学   15篇
大气科学   47篇
地球物理   243篇
地质学   300篇
海洋学   97篇
天文学   256篇
综合类   5篇
自然地理   145篇
  2023年   6篇
  2021年   16篇
  2020年   17篇
  2019年   17篇
  2018年   28篇
  2017年   26篇
  2016年   40篇
  2015年   30篇
  2014年   26篇
  2013年   54篇
  2012年   39篇
  2011年   37篇
  2010年   47篇
  2009年   59篇
  2008年   41篇
  2007年   43篇
  2006年   42篇
  2005年   37篇
  2004年   54篇
  2003年   36篇
  2002年   34篇
  2001年   35篇
  2000年   25篇
  1999年   13篇
  1998年   21篇
  1997年   18篇
  1996年   9篇
  1995年   13篇
  1994年   12篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   10篇
  1989年   8篇
  1987年   8篇
  1985年   11篇
  1984年   12篇
  1983年   11篇
  1982年   8篇
  1981年   12篇
  1980年   11篇
  1979年   15篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   7篇
  1972年   8篇
  1969年   5篇
  1968年   7篇
排序方式: 共有1108条查询结果,搜索用时 312 毫秒
201.
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2.  相似文献   
202.
203.
The interannual variability of near-coastal eastern North Pacific tropical cyclones is described using a data set of cyclone tracks constructed from U.S. and Mexican oceanic and atmospheric reports for the period 1951-2006. Near-coastal cyclone counts are enumerated monthly, allowing us to distinguish interannual variability during different phases of the May-November tropical cyclone season. In these data more tropical cyclones affect the Pacific coast in May-July, the early months of the tropical cyclone season, during La Niña years, when equatorial Pacific sea surface temperatures are anomalously cool, than during El Niño years. The difference in early season cyclone counts between La Niña and El Niño years was particularly pronounced during the mid-twentieth century epoch when cool equatorial temperatures were enhanced as described by an index of the Pacific Decadal Oscillation. Composite maps from years with high and low near-coastal cyclone counts show that the atmospheric circulation anomalies associated with cool sea surface temperatures in the eastern equatorial Pacific are consistent with preferential steering of tropical cyclones northeastward toward the west coast of Mexico.  相似文献   
204.
Through their consumption behavior, households are responsible for 72% of global greenhouse gas emissions. Thus, they are key actors in reaching the 1.5 °C goal under the Paris Agreement. However, the possible contribution and position of households in climate policies is neither well understood, nor do households receive sufficiently high priority in current climate policy strategies. This paper investigates how behavioral change can achieve a substantial reduction in greenhouse gas emissions in European high-income countries. It uses theoretical thinking and some core results from the HOPE research project, which investigated household preferences for reducing emissions in four European cities in France, Germany, Norway and Sweden. The paper makes five major points: First, car and plane mobility, meat and dairy consumption, as well as heating are the most dominant components of household footprints. Second, household living situations (demographics, size of home) greatly influence the household potential to reduce their footprint, even more than country or city location. Third, household decisions can be sequential and temporally dynamic, shifting through different phases such as childhood, adulthood, and illness. Fourth, short term voluntary efforts will not be sufficient by themselves to reach the drastic reductions needed to achieve the 1.5 °C goal; instead, households need a regulatory framework supporting their behavioral changes. Fifth, there is a mismatch between the roles and responsibilities conveyed by current climate policies and household perceptions of responsibility. We then conclude with further recommendations for research and policy.  相似文献   
205.
The alkaline volcanic rocks of the 1.8–0.9 Ma Auca Mahuida and post-mid-Pliocene Rio Colorado backarc volcanic fields east of the Andean Southern Volcanic Zone at ~37°–38°S have pronounced intraplate-like chemical signatures with some striking similarities to oceanic DM-EM1-like lavas of the south Atlantic Tristan da Cunha type. These backarc lavas are considered to have formed as a series of mantle batches typified by 4–7 % melting, with decompression melting initiating in a garnet-bearing mantle above a steepening subduction zone, and final equilibration occurring near the base of a ~65- to 70-km-thick lithosphere at temperatures of ~1,350–1,380 °C. Evolved Auca Mahuida mugearite to trachytic samples are best explained by crystal fractionation with limited mixing of partial melts of recently underplated basalts, in line with isotopic signatures that preclude significant radiogenic contamination in a preexisting refractory crust. Higher Ba/La and subtly higher La/Ta ratios than in nearby ~24–20 Ma primitive basalts or oceanic (OIB) lavas are attributed to the residual effects of slab fluids introduced during a shallow subduction episode recorded in the arc-like chemistry of the adjacent 7–4 Ma Chachahuén volcanic complex. Positive Sr, K and Ba spikes on mantle-normalized patterns of both primitive Auca Mahuida and ~24–20 Ma basalts, like those in EM-like OIB basalts, are attributed to mixing of continental lithosphere into the asthenosphere. In Patagonia, this mixing is suggested to have peaked as the South America continent accommodated to major late Oligocene plate convergence changes, as similar Sr, K and Ba spikes and DM-EM1 signatures are absent in ~50–30 Ma backarc lavas north of 51°S, and all of those south of 51°S. Introduction of an EM1-like component associated with lateral mantle flow of a Tristan da Cunha source is largely precluded by its Cretaceous age and distance to Patagonia.  相似文献   
206.
207.
This survey evaluated the monthly accumulation rate of marine debris and the types of objects washed ashore at Volunteer Beach on East Falkland between October 2001 and March 2002. The mean (±SD) accumulation rate of marine debris was 77 ± 25 items/km/month, of a mean weight of 17.3 ± 12 kg. Forty different objects were collected and the five most frequent items were cotton fabric, string, polystyrene packing sheet, plastic packing tape and broken plastic pieces. The debris on Volunteer Beach was dominated by fishing debris; 42% of the items were discarded fishing equipment, while 39% of the items were of a packaging or associated nature. The mostly likely source of this household waste was fishing vessels, with Falkland Islands Government (FIG) fisheries observers seeing 27 of the 40 items of debris collected from Volunteer Beach being discarded from fishing vessels. It is suggested that, although further marine debris research is warranted, more effective at-sea ship waste disposal regulations are required in Falkland waters to reduce environmental and economic threats both at the local and international level.  相似文献   
208.
Two closely related scleractinian coral species, Porites cylindrica and Porites rus, were transplanted to two different locations: the natural environment on the reef flat, and culture tanks on land. The use of tanks enabled the regulation of certain environmental factors, and, hence, the evaluation of specific responses of the corals to these factors. For both species, growth and survival were much better in the field than in the land-based tanks most probably due to unrestricted water circulation. Since the two species were subjected to identical experimental treatments, it was possible to distinguish inherent differences between them in terms of responses to external variables. Porites cylindrica was more susceptible than P. rus to predation by corallivores. Predators, as well as grazers, occurred in significant numbers in the field, but not in the land-based tanks. Porites rus, on the other hand, succumbed more readily to overgrowth by macroalgae which thrived in the culture tanks presumably because of significantly higher nutrient levels and the conspicuous absence of grazers. These results have broader ecological implications because of accelerated environmental changes taking place in present-day reefs due to human impact. Major examples are eutrophication and alterations in water circulation which frequently result in sub-optimal conditions for coral survival and growth.  相似文献   
209.
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 μg-P l−1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 μg-P l−1 and <20 μg-P l−1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions.  相似文献   
210.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号