首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24733篇
  免费   173篇
  国内免费   918篇
测绘学   1414篇
大气科学   2017篇
地球物理   4571篇
地质学   11734篇
海洋学   1005篇
天文学   1695篇
综合类   2163篇
自然地理   1225篇
  2019年   4篇
  2018年   4762篇
  2017年   4037篇
  2016年   2585篇
  2015年   238篇
  2014年   85篇
  2013年   31篇
  2012年   993篇
  2011年   2735篇
  2010年   2022篇
  2009年   2322篇
  2008年   1898篇
  2007年   2370篇
  2006年   72篇
  2005年   206篇
  2004年   412篇
  2003年   417篇
  2002年   255篇
  2001年   59篇
  2000年   60篇
  1999年   20篇
  1998年   26篇
  1997年   4篇
  1996年   4篇
  1994年   9篇
  1993年   7篇
  1991年   5篇
  1990年   7篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1982年   3篇
  1981年   25篇
  1980年   21篇
  1979年   4篇
  1977年   3篇
  1976年   7篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   4篇
  1964年   3篇
  1957年   3篇
  1956年   3篇
  1954年   3篇
  1950年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Information on highways is an essential input for various geospatial applications, including car navigation, forensic analysis on highway geometries, and intelligent transportation systems. Semi-automatic and automatic extractions of highways are critical for the regular updating of municipal databases and for highway maintenance. This study presents a semi-automatic data processing approach for extracting highways from high-resolution airborne LiDAR height information and aerial orthophotos. The method was developed based on two data sets. Experimental results for the first testing site showed that the accuracy of the proposed method for highway extraction was 74.50 % for completeness and 73.13 % for correctness. Meanwhile, the completeness and correctness for the second testing site were 71.20 and 70.72 %, respectively. The proposed method was compared with an object-based approach on a different data set. The accuracy for highway extraction of the object-based approach was 64.29 % for completeness and 63.11 % for correctness, whereas that of the proposed method was 67.14 % for completeness and 65.08 % for correctness. This research aims to promote semi-automatic highway extraction from LiDAR data and orthophotos by proposing a new approach and a multistep post-processing technique. The proposed method provides an accurate final output that is valuable for a wide range of geospatial applications.  相似文献   
82.
Chlorophyll fluorescence is an indicator of plant photosynthetic activity and has been used to monitor the health status of vegetation. Several studies have exploited the application of red/far-red chlorophyll fluorescence ratio in detecting the impact of various types of stresses in plants. Recently, sunlight-induced chlorophyll fluorescence imaging has been used to detect and discriminate different stages of mosaic virus infection in potted cassava plants with a multi-spectral imaging system (MSIS). In this study, the MSIS is used to investigate the impact of drought and herbicide stress in field grown crop plants. Towards this control and treatment groups of colocasia and sweet potato plants were grown in laterite soil beds and the reflectance images of these crop plants were recorded up to 14-days of treatment at the Fraunhofer lines of O2 B at 687 nm and O2 A at 759.5 nm and the off-lines at 684 and 757.5 nm. The recorded images were analyzed using the Fraunhofer Line Discrimination technique to extract the sunlight-induced chlorophyll fluorescence component from the reflectance images of the plant leaves. As compared to the control group, the chlorophyll fluorescence image ratio (F 687/F 760) in the treatment groups of both the plant varieties shows an increasing trend with increase in the extent of stress. Further, the F 687/F 760 ratio was found to correlate with the net photosynthetic rate (Pn) and stomatal conductance (gs) of leaves. The correlation coefficient (R 2) for the relationship of F 687/F 760 ratio with Pn were found to be 0.78, 0.79 and 0.78, respectively for the control, herbicide treated and drought treated colocasia plants, while these were 0.77, 0.86 and 0.88, respectively for sweet potato plants. The results presented show the potential of proximal remote sensing and the application F 687/F 760 fluorescence image ratio for effective monitoring of stress-induced changes in field grown plants.  相似文献   
83.
In recent years hyperspectral imaging has proved its significance in the detection and mapping of various objects of interest in a scene. Various methods for object detection in hyperspectral images have been developed with their advantages and limitations. In the present study, a methodology comprising spectral derivative (first order) and spectral information divergence has been investigated for detection of objects in hyperspectral images. The efficacy of the detection scheme has been examined over two different hyperspectral data sets of Hyperion images. Tea plants (Camellia sinensis) and Sal trees (Shorea robusta) (pure pixels) have been detected as the objects of interest in the hyperspectral images independently with reduced false pixels. The proposed methodology may in future be applied for classification of mixed pixels.  相似文献   
84.
A fast cyclone frame prediction is proposed in this paper that fits a Gaussian Mixture model on the spatio-temporal data extracted from the three penultimate time-lapse frames, prior to fuzzy regression. Unlike the previous work in Verma and Pal (In: Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8, 2010) that models the entire history on a per pixel basis, a single Gaussian mixture is used for fitting the spatio-temporal data within the time-span of the last three frames, making the process faster and more accurate. The increase in accuracy is attributed to the fact that cyclones evolve over time and thus the recent frames give a more meaningful insight into the predictions for the next frame. The number of components in the Gaussian mixture is determined from the occurrence of equally likely modes that correspond to high entropy peaks. Our results on satellite videos of recent cyclones that hit the Indian seas show a high accuracy of frame prediction.  相似文献   
85.
SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.  相似文献   
86.
This paper introduces a new method for GPS signal acquisition, which is based on the repeatability of successive code phase measurements and the M-of-N search algorithm. The performance of the proposed method in terms of probability of signal detection is similar to that of traditional methods, except that the calculation of the probability of detection does not rely on the noise distribution or the Carrier-to-Noise ratio (C/N0). The code phase repeatability-based method is presented along with equations for probability of detection and probability of false detection. If the distribution of the noise is known, it also provides an estimate of the C/N0. The proposed method is illustrated for coherent and non-coherent acquisition and C/N0 estimation.  相似文献   
87.
This article presents the application of a multivariate prediction technique for predicting universal time (UT1–UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1–UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1–UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1–UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1–UTC based on LS extrapolation or on LS + AR. In particular, the UT1–UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.  相似文献   
88.
改进的能量守恒方法及其在CHAMP重力场恢复中的应用   总被引:1,自引:0,他引:1  
An efficient method for gravity field determination from CHAMP orbits and accelerometer data is referred to as the energy balance approach. A new CHAMP gravity field recovery strategy based on the improved energy balance approach IS developed in this paper. The method simultaneously solves the spherical harmonic coefficients, daily Integration constant, scale and bias parameters. Two 60 degree and order gravitational potential models, XISM-CHAMPO1S from the classical energy balance approach, and XISM-CHAMPO2S from the improved energy balance, are determined using about one year's worth of CHAMP kinematic orbits from TUM and accelerometer data from GFZ. Comparisons among XISM-CHAMPO1S, XISM-CHAMPO2S, EIGEN-CGO3C, EIGEN-CHAMPO3S, EIGEN2, ENIGNIS and EGM96 are made. The results show that the XISM-CHAMPO2S model is more accurate than EGM96, EIGENIS, EIGEN2 and XISM-CHAMPO1S at the same degree and order, and has almost the same accuracy as EIGEN-CHAMPO3S.  相似文献   
89.
基于交互多模型的水下目标跟踪方法   总被引:1,自引:0,他引:1  
According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.  相似文献   
90.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more, GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced observations in harsh GPS environments.
Don KimEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号