首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
  国内免费   2篇
测绘学   1篇
大气科学   20篇
地球物理   15篇
地质学   33篇
海洋学   4篇
天文学   4篇
自然地理   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   10篇
  2013年   6篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   8篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   4篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
In situ cosmogenic nuclides are an important tool for quantifying landscape evolution and dating fossil-bearing deposits in the Cradle of Humankind (CoH), South Africa. This technique mainly employs cosmogenic 10-Beryllium (10Be) in river sediments to estimate denudation rates and the ratio of 26-Aluminium (26Al) to 10Be (26Al/10Be), to constrain ages of sediment burial. Here, we use 10Be and 26Al concentrations in bedrock and soil above the Rising Star Cave (the discovery site of Homo naledi) to constrain the denudation rate and the exposure history of soil on the surface. Apparent 10Be-derived denudation rates obtained from pebble- to cobble-sized clasts and coarse-sand in soil (on average 3.59 ± 0.27 m/Ma and 3.05 ± 0.25 m/Ma, respectively) are 2-3 times lower than the bedrock denudation rates (on average 9.46 ± 0.68 m/Ma). In addition, soil samples yield an average 26Al/10Be ratio (5.12 ± 0.27) that is significantly lower than the surface production ratio of 6.75, which suggests complex exposure histories. These results are consistent with prolonged surface residence of up to 1.5 Ma in vertically mixed soils that are up to 3 m thick. We conclude that the 10Be concentrations accumulated in soils during the long near-surface residence times can potentially cause underestimation of single-nuclide (10Be) catchment-wide denudation rates in the CoH. Further, burial ages of cave sediment samples that consist of an amalgamation of sand-size quartz grains could be overestimated if a pre-burial 26Al/10Be ratio calculated from the surface production is assumed. © 2019 John Wiley & Sons, Ltd.  相似文献   
32.
Rainfall variability is a crucial factor in food production,water resource planning and ecosystems, especially in regions with scarce freshwaterresources. In West Africa rainfall has been subject to largedecadal and interdecadal variations during the 20th century. The most prominent feature is thereduction in rainfall amount throughout the second half of the century with somerecovery at the end. Among the conceivable mechanisms, which might inducesuch low-frequency variability in West African precipitation, this study isfocussed onsea surface temperature (SST) variations and increasing greenhouse gas (GHG)concentrations. A tool is presented to distinguish between both impacts bymeans of various climate model simulations, which are found to reproduce theobserved rainfall characteristics over West Africa reasonably well.Further, a multi-model approach is usedto evaluate the expected future greenhouse signal in West African rainfall with respect to natural variability and intermodel variations.It is found that observed SST fluctuations, forcing two different atmospheric climate models, are able to reproduce the main features ofobserved decadal rainfall anomalies in the southern part of West Africathroughout the second half of the 20th century. The seasonal response to varying SST isstrongest in summer when the region is undergoing intensive monsoondynamics. Whereas both atmospheric models simulate the observeddrought tendency,following the 1960s, there is some indication that the additional GHG forcing in one model inducessome significantly different rainfall anomalies in recent years, re-initiatingeven positive anomalies relative to the climatological mean which has alsobeen observed since the 1990s. However, thisresult is still subject to model uncertainty.Coupled climate model integrations with different climate change scenariosalsopredict that precipitation, particularly over the Guinea Coast and Sahelregion, will steadily increase into the 21st century. The model-comprehensive signal isstatistically significant with respect to natural variability and modeluncertainty, suggesting that the observed recovery of yearly rainfall overparts of West Africa might actually reflect the beginning impact of risinganthropogenic GHG. The physical mechanism, linking the radiative forcing tothe monsoonal rainfall, probably works via warming of the tropicalAtlantic Ocean.  相似文献   
33.
Suspended sediment is the primary source for a sustainable agro‐ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality–monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
34.
We present a boundary element method to compute numerical approximations to the non-linear Molodensky problem, which reconstructs the surface of the Earth from the gravitational potential and the gravity vector. Our solution procedure solves a sequence of exterior oblique Robin problems and is based on a Nash-Hörmander iteration. We apply smoothing with the heat equation to overcome a loss of derivatives in the surface update. Numerical results show the error between the approximation and the exact solution in a model problem.  相似文献   
35.
通过对亚美尼亚Kajaran的一口自流井流量数据和电导率数据的多年分析,我们发现这口井对远场大震的响应非常敏感。一般同震流量增加,震后大约滞后一小时传导率减小。传导率在震后大约三周时趋于最小,然后需要数月时间来恢复震前水平。例如,1999年8月17土耳其Izm itMW7.6级地震,相距1 400 km,引起流量增加25%,传导率减小6%。流量也可以显示潮汐的波动,这种波动的幅度(顶点到顶点)约为水井产生的平均波动的5%,但传导率数据的潮汐信号并不明显,且不稳定。监测期11次地震引起最大同震静态应变异常的估算均低于10-9,只有一次正常状态小于潮汐应变。所以,远震相关的井水异常是地震地面振动引起的,而非同震变形。我们提出混有地下水的模型来解释观察到的现象,此模型考虑了这个特殊的地下水系统的特殊状态:封闭的含水层含两类在水化组分上具有很大差异的地下水,地下水和微破裂的混合区域与自流井的液压相互关联。认为与地震相关的异常,是由自流井附近的局部水头增加产生的,而局部水头的增加是由于地震波的通过引起的。本文讨论了可能的机制,对异常的时间变化曲线进行了模拟。  相似文献   
36.
Methane (CH4) concentrations and CH4 stable carbon isotopic composition ( \( \delta^{13} {\text{C}}_{{{\text{CH}}_{4} }} \) ) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L?1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by \( \delta^{13} {\text{C}}_{{{\text{CH}}_{4} }} \) values between ?50 and ?62 ‰ Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.  相似文献   
37.
38.
39.
Heiko Paeth 《Climate Dynamics》2011,36(7-8):1321-1336
Rainfall represents an important factor in agriculture and food security, particularly, in the low latitudes. Climatological and hydrological studies which attempt to diagnose the hydrological cycle, require high-quality precipitation data. In West Africa, like in many parts of the world, the density of observational data is low and climate models are needed in order to perform homogeneous and complete data sets. However, climate models tend to produce systematic errors, especially, in terms of rainfall and cloud processes, which are usually approximated by physical parameterizations. In this study, a 25-year climatology of monthly precipitation in West Africa is presented, derived from a regional climate model simulation, and evaluated with respect to observational data. It is found that the model systematically underestimates the rainfall amount and variability and does not capture some details of the seasonal cycle in sub-Saharan West Africa. Thus, in its present form the precipitation climatology is not appropriate to draw a realistic picture of the hydrological cycle in West Africa nor to serve as input data for impact research. Therefore, a statistical model is developed in order to adjust the simulated rainfall data to the characteristics of observed precipitation. Assuming that the regional climate model is much more reliable in terms of atmospheric circulation and thermodynamics, model output statistics is used to correct simulated rainfall by means of other simulated parameters of the near-surface climate like temperature, sea level pressure and wind components. Monthly data is adjusted by a cross-validated multiple regression model. The resulting adjusted rainfall climatology reveals a substantial improvement in terms of the model deficiencies mentioned above. In part II of this publication, the characteristics of simulated daily precipitation is adapted to station data by applying a weather generator. Once the postprocessing approach is trained, it can be extrapolated to simulation periods, for which observational data do not exist like for instance future climate.  相似文献   
40.
The behaviour of precipitation and maximum temperature extremes in the Mediterranean area under climate change conditions is analysed in the present study. In this context, the ability of synoptic downscaling techniques in combination with extreme value statistics for dealing with extremes is investigated. Analyses are based upon a set of long-term station time series in the whole Mediterranean area. At first, a station-specific ensemble approach for model validation was developed which includes (1) the downscaling of daily precipitation and maximum temperature values from the large-scale atmospheric circulation via analogue method and (2) the fitting of extremes by generalized Pareto distribution (GPD). Model uncertainties are quantified as confidence intervals derived from the ensemble distributions of GPD-related return values and described by a new metric called “ratio of overlapping”. Model performance for extreme precipitation is highest in winter, whereas the best models for maximum temperature extremes are set up in autumn. Valid models are applied to a 30-year period at the end of the twenty-first century (2070–2099) by means of ECHAM5/MPI-OM general circulation model data for IPCC SRES B1 scenario. The most distinctive future changes are observed in autumn in terms of a strong reduction of precipitation extremes in Northwest Iberia and the Northern Central Mediterranean area as well as a simultaneous distinct increase of maximum temperature extremes in Southwestern Iberia and the Central and Southeastern Mediterranean regions. These signals are checked for changes in the underlying dynamical processes using extreme-related circulation classifications. The most important finding connected to future changes of precipitation extremes in the Northwestern Mediterranean area is a reduction of southerly displaced deep North Atlantic cyclones in 2070–2099 as associated with a strengthened North Atlantic Oscillation. Thus, the here estimated future changes of extreme precipitation are in line with the discourse about the influence of North Atlantic circulation variability on the changing climate in Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号