首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  国内免费   1篇
大气科学   14篇
地球物理   11篇
地质学   26篇
海洋学   5篇
天文学   19篇
自然地理   17篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
31.
Observations of the concentration of several nitrogen containing compounds at five rural Scandinavian sites during March–June 1993 are reported. Total nitrate (NO 3 - + HNO3) and total ammonium (NH 4 + + NH3) were measured by denuder and filter pack. In general the methods agree well. At all sites the particulate fraction dominated, with the largest fraction of NO 3 - and the lowest of NH 4 + at the sites which were closest to the emission sources. The fraction of NO 3 - of total nitrate increased with increasing NO2 concentrations, indicating that the nighttime conversion of NO2 to NO 3 - is an important route of formation for NO 3 - . A positive correlation was found between HNO3 and O3 in June at all sites, while no correlation was found early in the spring. Model calculations were made with a lagrangian boundary layer photooxidant model for the whole period, and compared to the measured concentrations. The calculated ratio between mean observed and modelled daily maximum concentrations of ozone over the measurement period were within +/–10% at all sites. The models ability to describe the daily ozone maximum concentration was satisfactory with an average deviation of 19–22% from the observed concentrations. HNO3 was underestimated by over 50% at all sites except the one closest to the emission sources. The correlation between modelled and observed concentrations was generally best for the sites with shortest transport distance from the sources of emission.  相似文献   
32.
Loading by atmosphere and by the Baltic Sea cause gravity change at Metsähovi, located 15 km from the open sea. Gravity is changed by both the Newtonian attraction of the loading mass and by the crustal deformation. We have performed loading calculations using appropriate Green's function for both gravity and deformation, for both atmospheric and Baltic loading. The loading by atmosphere has been computed using a detailed surface pressure field from high resolution limited area model (HIRLAM) for north Europe up to 10° distances. Baltic Sea level is modelled using tide gauge records. Calculations show that 1 m of uniform layer of water corresponds to 31 nm s−2 in gravity and −11 mm in height. Modelled loading is compared with observations of the superconducting gravimeter T020 for years 1994–2002. The combination of HIRLAM and a tide gauge record decreases RMS of gravity residuals by 14% compared to single admittance in air pressure corrections without sea level data. Regression of gravity residuals on the tide gauge record at Helsinki (at 30 km distance) gives a gravity effect of 26 nm s−2 m−1 for Baltic loading.The gravity station is co-located with a permanent GPS station. We have also associated the loading effects of the atmosphere and of the Baltic Sea with temporal height variations. The range of modelled vertical motion due to air pressure was 46 mm and that due to sea level 18 mm. The total range was 38 mm. The effects of the Baltic Sea and of the atmosphere partly cancel each other, since at longer periods the inverse barometer assumption is valid. Regression of the modelled height on local air pressure gives −0.37 mm hPa−1, corresponding approximately to width 6° for pressure system.We have tested the models using one year of daily GPS data. Multilinear regression on local air pressure and sea level in Helsinki gives the coefficient −0.34 mm hPa−1 for pressure, and −11 mm m−1 for sea level. These match model values. Loading by air pressure and Baltic Sea explains nearly 40% of the variance of daily GPS height solutions.  相似文献   
33.
The scattering properties of particulate rings with volume filling factors in the interval D=0.001-0.3 are studied, with photometric Monte Carlo ray tracing simulations combining the advantages of direct (photons followed from the source) and indirect methods (brightness as seen from the observing direction). Besides vertically homogeneous models, ranging from monolayers to classical many-particle thick rings, particle distributions obtained from dynamical simulations are studied, possessing a nonuniform vertical profile and a power law distribution of particle sizes. Self-gravity is not included to assure homogeneity in planar directions. Our main goal is to check whether the moderately flattened ring models predicted by dynamical simulations (with central plane D>0.1) are consistent with the basic photometric properties of Saturn's rings seen in ground-based observations, including the brightening near zero phase angle (opposition effect), and the brightening of the B-ring with increasing elevation angle (tilt effect). Our photometric simulations indicate that dense rings are typically brighter in reflected light than those with D→0, due to enhanced single scattering. For a vertically illuminated layer of identical particles this enhancement amounts at intermediate viewing elevations to roughly 1+2D. Increased single scattering is also obtained for low elevation illumination, further augmented at low phase angles α by the opposition brightening when D increases: the simulated opposition effect agrees very well with the Lumme and Bowell (1981, Astron. J. 86, 1694-1704) theoretical formula. For large α the total intensity may also decrease, due to reduced amount of multiple scattering. For the low (α=13°) and high (α=155°) phase angle geometries analyzed in Dones et al. (1993, Icarus 105, 184-215) the brightness change for D=0.1 amounts to 20% and −17%, respectively. In the case of an extended size distribution, dynamical simulations indicate that the smallest particles typically occupy a layer several times thicker than the largest particles. Even if the large particles form a dynamically dense system, a narrow opposition peak can arise due to mutual shadowing among the small particles: for example, a size distribution extending about two decades can account for the observed about 1° wide opposition peak, solely in terms of mutual shadowing. The reduced width of the opposition peak for extended size distribution is in accordance with Hapke's (1986, Icarus 67, 264-280) treatment for semi-infinite layers. Due to vertical profile and particle size distribution, the photometric behavior is sensitive to the viewing elevation: this can account for the tilt-effect of the B-ring, as dense and thus bright central parts of the ring become better visible for larger elevation, whereas in the case of smaller elevation, mainly low volume density upper layers are visible. Since multiple scattering is not involved, the explanation works also for albedo well below unity. Inclusion of nonzero volume density helps also to model some of the Voyager observations. For example, the discrepancy between predicted and observed brightness at large phase angles for much of the A-ring (Dones et al., 1993, Icarus 105, 184-215) is removed when the enhanced low α single scattering and reduced large α multiple scattering is allowed for. Also, a model with vertical thickness increasing with saturnocentric distance offers at least a qualitative explanation for the observed contrast reversal between the inner and outer A-ring in low and high phase Voyager images. Differences in local size distribution and thus on the effective D may also account for the contrast reversal in resonance sites.  相似文献   
34.
Seasonal GCM-based temperature and precipitation projections for the end of the 21st century are presented for five European regions; projections are compared with corresponding estimates given by the PRUDENCE RCMs. For most of the six global GCMs studied, only responses to the SRES A2 and B2 forcing scenarios are available. To formulate projections for the A1FI and B1 forcing scenarios, a super-ensemble pattern-scaling technique has been developed. This method uses linear regression to represent the relationship between the local GCM-simulated response and the global mean temperature change simulated by a simple climate model. The method has several advantages: e.g., the noise caused by internal variability is reduced, and the information provided by GCM runs performed with various forcing scenarios is utilized effectively. The super-ensemble method proved especially useful when only one A2 and one B2 simulation is available for an individual GCM. Next, 95% probability intervals were constructed for regional temperature and precipitation change, separately for the four forcing scenarios, by fitting a normal distribution to the set of projections calculated by the GCMs. For the high-end of the A1FI uncertainty interval, temperature increases close to 10°C could be expected in the southern European summer and northern European winter. Conversely, the low-end warming estimates for the B1 scenario are ~ 1°C. The uncertainty intervals of precipitation change are quite broad, but the mean estimate is one of a marked increase in the north in winter and a drastic reduction in the south in summer. In the RCM simulations driven by a single global model, the spread of the temperature and precipitation projections tends to be smaller than that in the GCM simulations, but it is possible to reduce this disparity by employing several driving models for all RCMs. In the present suite of simulations, the difference between the mean GCM and RCM projections is fairly small, regardless of the number or driving models applied.  相似文献   
35.
The relationship between surface-sediment cladoceran and chironomid communities to lake depth was analysed in 53 lakes distributed across timberline in northern Fennoscandia using multivariate statistical approaches. The study sites are small and bathymerically simple, with water depth ranging from 0.85-27.0 m (mean 6.36 m). Maximum lake depth was the most important factor in explaining the cladoceran distributions and the second most important factor in explaining the chironomid distributions in these subarctic lakes, as assessed on the basis of a series of constrained RDAs, Monte Carlo permutation tests, and variance partitioning. Quantitative inference models for maximum lake depth were created for both groups of animals. Well-performing calibration functions for predicting lake depth were obtained in each case using linear partial least squares (PLS) regression and calibration, weighted averaging (WA) with an 'inverse' deshrinking regression, and weighted averaging partial least squares (WA-PLS). Quantitative reconstructions of lake level fluctuations should be possible from cladoceran and chironomid core data with a root mean squared error of prediction (RMSEP), as estimated by jack-knifing, of about 1.6-3.0 m.  相似文献   
36.
37.
38.
We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake??s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.  相似文献   
39.
Climate models suggest that the global warming during the early to mid‐Holocene may have partly resulted from the northward advance of the northern treeline and subsequent reduction of the planetary albedo. We investigated the Holocene vegetation history of low arctic continental Nunavut, Canada, from a radiocarbon‐dated sediment core from TK‐2 Lake, a small‐lake ca. 200 km north of the limit of the forest‐tundra. The pollen and loss‐on‐ignition data indicate the presence of dwarf shrub tundra in the region since the beginning of organic sedimentation at ca. 9000 cal. yr BP with dominance of Betula, especially since 8700 cal. yr BP. At 8100–7900 cal. yr BP the dominance of the shrub tundra was punctuated by a transient decline of Betula and coincident increases of Ericaceae undiff., Vaccinium‐type, and Gramineae. This suggests an abrupt disturbance of the Betula glandulosa population, approximately simultaneously with the sudden 8200 cal. yr BP event in the North Atlantic. However, in the absence of other sites studied in the area, linkage to the 8200 cal. yr BP event remains tentative. The lack of any evidence of forest‐tundra in the region constrains the northern limit of the mid‐Holocene advance of the forest‐tundra boundary in central northern Canada. Consequently, our results show that the climate models imposing a mid‐Holocene advance of the limit of the forest‐tundra to the arctic coast of Canada may have overestimated the positive climatic feedback effects that can result from the replacement of tundra by the boreal forest. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
40.
Modern assessment and monitoring of aquatic ecosystems is increasingly based on biota and the “reference condition” approach, in which the observed values (O) of biological variables are compared to those expected in the absence of human disturbance (E). To use this approach, correct estimation and validation of reference conditions are critical. Because appropriate modern or historical data are never available for this approach, palaeolimnological data offer an alternative. We used a calibration data set from 73 profundal sites in semi-pristine Finnish lakes to construct a regression model for estimating expected values for the chironomid Benthic Quality Index (BQI)—a macroinvertebrate metric widely used in bioassessment—from environmental variables that are insensitive to human disturbance. For comparison, reference values were estimated using the European legislative rationale based on a priori lake typology. Performance of the alternative approaches was assessed by internal ‘leave-one-out’ cross-validation using the calibration set and by external cross-validation using independent palaeolimnological data on BQI values representing the historical pristine status of 24 lake basins. Additionally, for 19 of these sites, which vary in their degree of human impact, the ratio of present BQI to that in pristine condition, which shows the degree of actual change, if any, was calculated from palaeolimnological data and compared with the O/E ratios based on the present chironomid data and estimated E. A linear regression model with mean depth and mean/maximum depth ratio as independent variables estimated the reference values of BQI much closer to the observed ones (r 2 = 0.58, RMSEP = 0.65 and r 2 = 0.71 RMSEP = 0.55; for internal and external cross-validation, respectively) than did the typology approach (r 2 = 0.28, RMSEP = 0.86; r 2 = 0.10, RMSEP = 0.97). The regression approach also yielded O/E ratios more similar to the actual ones (r 2 = 0.79, RMSEP = 0.09) than did the typology approach (r 2 = 0.62, RMSEP = 0.23). Our results strongly support the use of lake morphometric variables and modelling instead of categorical lake typology for the establishment of reference conditions for profundal macroinvertebrate communities and demonstrate the utility of palaeolimnological data in the validation of reference values and assessment methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号