首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
  国内免费   2篇
测绘学   3篇
大气科学   3篇
地球物理   31篇
地质学   32篇
海洋学   11篇
天文学   11篇
自然地理   13篇
  2021年   2篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   1篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1981年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
21.
One of the most documented effects of human activity on our environment is the reduction of stratospheric ozone resulting in an increase of biologically harmful ultraviolet (UV) radiation. In a less predictable manner, UV radiation incident at the surface of the earth is expected to be further modified in the future as a result of altered cloud condition, atmospheric aerosol concentration, and snow cover. Although UV radiation comprises only a small fraction of the total solar radiation that is incident at the earth’s surface, it has the greatest energy per unit wavelength and, thus, the greatest potential to damage the biosphere. Recent investigations have highlighted numerous ways that UV radiation could potentially affect a variety of ecological processes, including nutrient cycling and the terrestrial carbon cycle. The objectives of the following literature review are to summarize and synthesize the available information relevant to the effects of UV radiation and other climate change factors on the terrestrial carbon balance in an effort to highlight current gaps in knowledge and future research directions for UV radiation research.  相似文献   
22.
Laminated sediments in Lake Ohau, Mackenzie Basin, New Zealand, offer a potential high‐resolution climate record for the past 17 kyr. Such records are particularly important due to the relative paucity of detailed palaeoclimate data from the Southern Hemisphere mid‐latitudes. This paper presents outcomes of a study of the sedimentation processes of this temperate lake setting. Hydrometeorological, limnological and sedimentological data were collected over a 14 month period between 2011 and 2013. These data indicate that seasonality in the hydrometeorological system in combination with internal lake dynamics drives a distinct seasonal pattern of sediment dispersal and deposition on a basin‐wide scale. Sedimentary layers that accumulate proximal to the lake inflow at the northern end of the lake form in response to discrete inflow events throughout the year and display an event stratigraphy. In contrast, seasonal change in the lake system controls accumulation of light (winter) and dark (summer) laminations at the distal end of the lake, resulting in the preservation of varves. This study documents the key processes influencing sediment deposition throughout Lake Ohau and provides fundamental data for generating a high‐resolution palaeoclimate record from this temperate lake.  相似文献   
23.
Hekla and Torfajökull are active volcanoes at a rift–transform junction in south Iceland. Despite their location next to each other they are physically and geologically very different. Hekla is an elongate stratovolcano, built mainly of basaltic andesite. Torfajökull is a prominent rhyolitic centre with a 12-km-diameter caldera and extensive geothermal activity. The scope of this study is to examine the propagation of body waves of local earthquakes across the Hekla–Torfajökull area and look for volumes of anomalous S-wave attenuation, which can be evidence of magma chambers. So far the magma chamber under Hekla has been modelled with various geophysical means, and its depth has been estimated to be 5–9 km. A data set of 118 local earthquakes, providing 663 seismic rays scanning Hekla and Torfajökull, was used in this study. The major part, 650 seismograms, did not show evidence for S-wave attenuation under these volcanoes. Only six seismograms had clear signs of S-wave attenuation and seven seismograms were uncertain cases. The data set samples Hekla well at depths of 8–14 km, and south part of it also at 4–8 km and 14–16 km. Western Torfajökull is sampled well at depths of 4–14 km, eastern and southern Torfajökull at 6–12 km. Conclusions cannot be drawn regarding the existence of magma beyond these depth ranges. Also, magma volumes of smaller dimensions than about 800 m cannot be detected with this method. If a considerable molten volume exists under Hekla, it must be located either above 4 km or below 14 km. The former possibility seems unlikely, because Hekla lacks geothermal activity and persistent seismicity, usually taken as expressions of a shallow magma chamber. An aseismic volume with a diameter of 4 km at the depth of 8 km in the west part of Torfajökull has been inferred in earlier studies and interpreted as evidence for a cooling magma chamber. Our results indicate that this volume cannot be molten to a great extent because S-waves travelling through it are not attenuated. Intense geothermal activity and low-frequency earthquakes are possibly signs of magma in the south part of Torfajökull, but a magma chamber was not detected there in the areas sampled by this study.Editorial responsibility: T. Druitt  相似文献   
24.
Successful species conservation typically results in conflicts between wildlife protection and economic uses of natural resources as in fisheries and aquaculture. This article shows why managing these conflicts require a more comprehensive approach than currently pursued by endangered species conservation programmes. Against the background of several case studies focussing on wildlife conflicts in European waters this article derives two challenges for institutional response: First, the question of mandate—which societal actor initiates management related processes that require multiple actors to collaborate? Second, how can continuous processes of collaboration be sustained?  相似文献   
25.
A modelling study to investigate the effects of land use change from natural forest to agricultural land on large-scale catchment runoff in southern Africa is described. The evaporative component of the model considers the catchment to be composed of one of three surface types—forest, agricultural land or water surface. Values of the model parameters for the forest and agricultural lands were obtained from experimental studies carried out in the dry zone of India. Estimates of average monthly potential evaporation, together with measurements of monthly rainfall, were used in the model to predict the monthly levels of Lake Malawi. These were compared with observed levels. From 1896 to 1967 the major fluctuations in lake level, both seasonally and annually, are well described by this model (excepting the period from 1935 to 1945, immediately following the time when there was no outflow from the lake) using a value of 64% for the forest coverage of the catchment. The overall agreement between prediction and observation indicates that variations in rainfall alone, without changes in either evaporative demand or in the hydraulic regime of the lake, are sufficient to explain lake level changes. For the more recent period (1954–1994), model predictions of lake level which take into account a decrease in forest cover of 13% over the period 1967–1990 (consistent with the actual decrease in forest cover for this period) agree well with observations both annually and seasonally. Without this decrease in forest cover, the model predicted that the lake level would have been about 1 m lower than that observed during the southern African drought of 1992. The model, in conjunction with real-time rainfall data obtained from land-based gauges, radar or satellite observations, can be used for real-time water resource management applications such as the operation of barrages regulating the flow from Lake Malawi or for the issuing of flood or drought warnings.  相似文献   
26.
27.
ABSTRACT

We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter alia, on the capability of scientists to deliver a new, coherent and technical vision for the future development of water systems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   
28.
ABSTRACT

For the development of sustainable, efficient risk management strategies for the hydrological extremes of droughts and floods, it is essential to understand the temporal changes of impacts, and their respective causes and interactions. In particular, little is known about changes in vulnerability and their influence on drought and flood impacts. We present a fictitious dialogue between two experts, one in droughts and the other in floods, showing that the main obstacles to scientific advancement in this area are both a lack of data and a lack of commonly accepted approaches. The drought and flood experts “discuss” available data and methods and we suggest a complementary approach. This approach consists of collecting a large number of single or multiple paired-event case studies from catchments around the world, undertaking detailed analyses of changes in impacts and drivers, and carrying out a comparative analysis. The advantages of this approach are that it allows detailed context- and location-specific assessments based on the paired-event analyses, and reveals general, transferable conclusions based on the comparative analysis of various case studies. Additionally, it is quite flexible in terms of data and can accommodate differences between floods and droughts.  相似文献   
29.
We present evidence for the origin of the Lyngen Gabbro of the Ordovician Lyngen Magmatic Complex in Troms, Northern Norway. The two magmatic suites of the Lyngen Gabbro strike parallel NNE-SSW, and have distinct magmatic signatures. We define these signatures by using major and trace-element analyses together with selected major- and trace-element mineral analyses and 143Nd/144Nd-isotope whole-rock analyses of gabbroic to tonalitic plutonic rocks from seven detailed cross-sections from this large gabbro-complex. The Western suite of the Lyngen Gabbro precipitated from magma that may have been derived from the same system as the associated volcanic rocks. The gabbros have high An-content (An>90) of their plagioclases relative to co-existing mafic minerals. Together with somewhat high Nd(t) values (+6), this implies that the parental magmas were hydrous tholeiites similar to those found in back arc basins today. The Eastern suite, on the other hand, consist of cumulates that were precipitated from melts resembling those of ultra-depleted high-Ca boninitic magmas found in fore-arcs. Extremely high-An plagioclases (An>95) co-exist with evolved mafic minerals and oxides, and the Nd(t) values are lower (+4) than in the Western suite. The Eastern suite has no volcanic counterpart, but dikes intersecting the suites have compositions that possibly represent its parental magma. The oceanic Rypdalen Shear Zone generally separates the two suites in the north, but several non-tectonic transitions from boninitic to tholeiitic signatures southwards advocate that the magmatism happened concurrently. The magmatic proximity between the suites, the hydrous magmatism and the absence of a silicic or calc-alkaline mature arc section, suggests that the Lyngen Gabbro formed in the Iapetus Ocean under conditions presently found in incipient arcs later emplaced as outer arc highs.  相似文献   
30.
Volcanic tremor at the Hekla volcano is directly related to eruptive activity. It starts simultaneously with the eruptions and dies down at the end of them. No tremor at Hekla has been observed during non-eruptive times. The 1991 Hekla eruption began on 17 January, after a short warning time. Local seismograph stations recorded small premonitory earthquakes from 16:30 GMT on. At 17:02 GMT, low-frequency volcanic tremor became visible on the seismograph records, marking the onset of the eruption. The initial plinian phase of the eruption was short-lived. During the first day several fissures were active but, by the second day, the activity was already limited to a segment of one principal fissure. The eruption lasted almost 53 days. At the end of it, during the early hours of 11 March, volcanic tremor disappeared under the detection threshold and was followed by a swarm of small earthquakes. At the start of the eruption, the tremor amplitude rose rapidly and reached a maximum in only 10 min. The tremor was most vigorous during the first hour and started to decline sharply during the next hour, and later on more gently. During the eruption as a whole, the tremor had a continuous declining trend, with occasional increases lasting up to about 2 days. Spectral analysis of the tremor during the first 7 h of the eruption shows that it settled quickly, within a couple of minutes, to its characteristic frequency band, 0.5–1.5 Hz. The spectrum had typically one dominant peak at 0.7–0.9 Hz, and a few subdominant peaks. Hekla tremor likely has a shallow source. Particle motion plots suggest that it contains a significant component of surface waves. The tremor started first when the connection of the magma conduit with the atmosphere was reached, suggesting that degassing may contribute to its generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号