全文获取类型
收费全文 | 890篇 |
免费 | 45篇 |
国内免费 | 11篇 |
专业分类
测绘学 | 52篇 |
大气科学 | 44篇 |
地球物理 | 260篇 |
地质学 | 461篇 |
海洋学 | 44篇 |
天文学 | 29篇 |
综合类 | 14篇 |
自然地理 | 42篇 |
出版年
2025年 | 1篇 |
2024年 | 6篇 |
2023年 | 9篇 |
2022年 | 37篇 |
2021年 | 54篇 |
2020年 | 51篇 |
2019年 | 34篇 |
2018年 | 83篇 |
2017年 | 74篇 |
2016年 | 98篇 |
2015年 | 51篇 |
2014年 | 70篇 |
2013年 | 105篇 |
2012年 | 49篇 |
2011年 | 51篇 |
2010年 | 33篇 |
2009年 | 29篇 |
2008年 | 20篇 |
2007年 | 11篇 |
2006年 | 13篇 |
2005年 | 3篇 |
2004年 | 12篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 6篇 |
1989年 | 3篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1969年 | 1篇 |
排序方式: 共有946条查询结果,搜索用时 15 毫秒
1.
Mohammad Rezaei Masoud Monjezi Saeed Ghorbani Moghaddam Farhad Farzaneh 《Arabian Journal of Geosciences》2011,5(5):1031-1037
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden). 相似文献
2.
History matching is still one of the main challenging parts of reservoir study especially in giant brown oil fields with lots of wells. In these cases, history matching with conventional manual technique needs many runs and takes months to get a match. In this work, an innovative approach was suggested for fast history matching in a real brown field. The workflow was employed based on an optimized proxy model for history matching of a field consisting of 14 active wells with multiple responses (which are production rate and pressure data) in the south part of Iran. The main important features of the proposed algorithm were defining a proxy model which is response surface method in which 21 model parameters were incorporated based on cubic centered face method. The proxy model was then optimized by one of the most famous algorithms which is genetic algorithm. Proxy model was successfully performed using 256 samples leading into p- value of 0.531 and R 2 of 0.91 dataset. As a result, the proposed workflow and algorithm showed good and acceptable results for history matching of studied real model. 相似文献
3.
4.
Mahsa H. Kashani Mohammad Ali Ghorbani Yagob Dinpasho Sedaghat Shahmorad Zbigniew W. Kundzewicz 《Water Resources》2017,44(4):568-578
Although the Volterra models are non-parsimonious ones, they are being used because they can mimic dynamics of complex systems. However, applying and identification of the Volterra models using data may result in overfitting problem and uncertainty. In this investigation we evaluate capability of different wavelet forms for decomposing and compressing the Volterra kernels in order to overcome this problem by reducing the number of the model coefficients to be estimated and generating smooth kernels. A simulation study on a rainfall?runoff process over the Cache River watershed showed that the method performance is successful due to multi-resolution capacity of the wavelet analysis and high capability of the Volterra model. The results also revealed that db2 and sym2 wavelets have the same high potential in improving the linear Volterra model performance. However, QS wavelet was more successful in yielding smooth kernels. Moreover, the probability of overfitting while identifying the nonlinear Volterra model may be less than the linear model. 相似文献
5.
Mohammad R. Al-Agha 《Environmental Geology》2005,47(7):898-906
Groundwater is a critical resource in Khanyounis city as it is the main source of water. The aquifer has deteriorated to a high degree, during the last two to three decades, in quality and quantity. More than 90% of the population get their drinking water from brackish water desalination plants. Fifteen domestic wells were sampled in 2002 to probe the hydrogeochemical components that influence the water quality. Na, K, Ca, Mg, Cl, SO4, NO3, and HCO3 were analyzed. The data were statistically treated and plotted on the Piper diagram. A hydrogeochemical numerical model for carbonate minerals was constructed using the PHREEQ package. The results show that the groundwater is polluted with Cl, from seawater, and NO3, sourced from fertilizers and sewage. The regression analysis shows that there are three groups of elements that are significantly and positively correlated. Na–Cl signature and plot show that seawater intrusion is advancing into the aquifer. The main hydrochemical facies of the aquifer (Na+K–Cl+SO4), represents 60% of the total wells. Whereas 32.3% of the wells are located in the no pair up and no pair down fields on the Piper diagram. Calcite, dolomite, and aragonite solubility were assessed in terms of the saturation index where they show positive values indicating supersaturation. The hydrogeochemical behavior is rather complicated and is affected by anthropogenic and natural parameters. 相似文献
6.
Miduk hypogene and supergene porphyry Cu–Mo mineralization occurs within the Miocene porphyritic quartz–diorite and host Eocene plagioclase–hornblende phyric andesitic pyroclastic and flow sequence. Both the host rocks were extensively altered by hydrothermal fluids to dominantly potassic, phyllic, and argillic with interstitial to distal propylitic types. 相似文献
7.
An Introduction to MODISI and SCMOD Methods for Correction of the MODIS Snow Assessment Algorithm 总被引:1,自引:0,他引:1
Mohammad Reza Mobasheri Hossein Shafizadeh Moghadam Siavosh Shayan 《Journal of the Indian Society of Remote Sensing》2010,38(4):674-685
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently
the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and
monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose
one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high
spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous
images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression
and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison
of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes
according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and
MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI
method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02. 相似文献
8.
This paper discusses a geostatistical approach to model a groundwater aquifer in 3-D. The study aims at utilizing geostatistics as a tool for characterizing zones of better-water quality in a brackish-saline aquifer. In particular, the geostatistical model was constructed to characterize the aquifer’s salinity, represented by total dissolved solids (TDS), using logs of porosity and resistivity. Quality-checked estimated TDS vertical profiles were employed to construct and model horizontal and vertical semivariograms. Parameters of semivariogram models were used to develop both the kriging plan and the generated model. Results of this modeling process are shown in the form of horizontal salinity distribution maps. The aquifer was sliced into 20 layers, each 20 m thick, to represent its overall thickness. Salinity layers maps reflect vertical stratification of TDS concentrations in the aquifer and show that water quality deteriorates with depth and toward the northern part of the aquifer. Relatively better-quality water (TDS ≤10,000 mg/l) can be found at depths between 100 and 250 m below the aquifer’s top in both eastern and southeastern parts. Water in the same interval to the western and southwestern parts reflects the presence of higher TDS concentration. From a planning point of view, it is more feasible to target the eastern part of the aquifer for pumping and desalination purposes. In addition, the generated model could be utilized as an initial condition for flow simulation. 相似文献
9.
Mohammad Reza Maleki Javan Asadollah Noorzad Manouchehr Latifi Namin 《国际地质力学数值与分析法杂志》2008,32(6):681-699
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (u–w formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Mohammad Heidarzadeh Moharram D. Pirooz Nasser H. Zaker Ahmet C. Yalciner 《Natural Hazards》2009,48(2):229-243
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern
Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the
past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment.
Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The
numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis
each resulting from a 1945-type earthquake (M
w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the
MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending
on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern
coast of the United Arab Emirates, respectively. 相似文献