首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   15篇
  国内免费   9篇
测绘学   15篇
大气科学   36篇
地球物理   87篇
地质学   125篇
海洋学   39篇
天文学   111篇
综合类   1篇
自然地理   23篇
  2022年   4篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   22篇
  2012年   19篇
  2011年   20篇
  2010年   20篇
  2009年   26篇
  2008年   10篇
  2007年   12篇
  2006年   12篇
  2005年   11篇
  2004年   8篇
  2003年   12篇
  2002年   15篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1987年   10篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   7篇
  1981年   6篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   9篇
  1976年   3篇
  1975年   4篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1970年   2篇
排序方式: 共有437条查询结果,搜索用时 359 毫秒
271.
Symbiotic systems, in particular symbiotic novae, have been suggested to be very early stages of planetary nebulae. Some of them have been described as going through a Wolf-Rayet phase. We argue that there may be a direct relation between symbiotic objects and planetary nebulae, and that the Wolf-Rayet phase is connected to an active spell of the hot companion. Symbiotic stars could lead to planetary nebulae with two central stars with different radiation temperatures and luminosities, where each has the power to ionize a planetary nebula on its own.  相似文献   
272.
Abstract— Widespread evidence exists for heating that caused melting, thermal metamorphism, and aqueous alteration in meteorite parent bodies. Previous simulations of asteroid heat transfer have assumed that accretion was instantaneous. For the first time, we present a thermal model that assumes a realistic (incremental) accretion scenario and takes into account the heat budget produced by decay of 26Al during the accretion process. By modeling 6 Hebe (assumed to be the H chondrite parent body), we show that, in contrast to results from instantaneous accretion models, an asteroid may reach its peak temperature during accretion, the time at which different depth zones within the asteroid attain peak metamorphic temperatures may increase from the center to the surface, and the volume of high‐grade material in the interior may be significantly less than that of unmetamorphosed material surrounding the metamorphic core. We show that different times of initiation and duration of accretion produce a spectrum of evolutionary possibilities, and thereby, highlight the importance of the accretion process in shaping an asteroid's thermal history. Incremental accretion models provide a means of linking theoretical models of accretion to measurable quantities (peak temperatures, cooling rates, radioisotope closure times) in meteorites that were determined by their thermal histories.  相似文献   
273.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   
274.
275.
276.
Synthetic polycrystals of α-Mg2GeO4 (with the olivine structure) and γ-Mg2GeO4 (with the spinel structure) deformed at high temperature and pressure in their respective stability fields were investigated by analytical transmission electron microscopy. Specimens with a mean grain size of 20–30 µm deform by dislocation glide and/or climb. The predominance of glide versus climb depends on stress and grain orientation. The defect microstructures of both polymorphs are very similar to those observed in their respective silicate analogues, α- and γ-(Mg,Fe)2SiO4, and, in the case of the spinel phase, very similar to those observed in magnesium aluminate spinels. These observations suggest that Mg2GeO4 is a good rheological analogue for the Earth’s upper mantle. A spinel specimen deformed under the same conditions of temperature and strain rate as an olivine specimen was approximately three times stronger than olivine. In specimens of both phases deformed at or above 1400 K, a thin amorphous film composed of Mg, Ge, and O was detected along some grain boundaries. Grains ≤10 µm diameter surrounded by a film of amorphous phase (>10 nm thick) exhibited low dislocation densities, and deformation appeared to have occurred by grain boundary sliding.  相似文献   
277.
Abstract— Research on extraterrestrial materials plays a critical role in formulating the science rationale and design for spacecraft missions, and, conversely, spaceflight holds great promise for solving perplexing problems in meteoritics. The connections between meteoritics and sample-return missions are obvious: Meteorite research can define sampling strategies, the capabilities of sampling devices, acceptable levels of chemical contamination and physical alteration of samples, and the conditions under which samples are stored prior to and during recovery. For their part, sample-return missions can provide geologic context for meteorites, increased sampling diversity (including materials not sampled as meteorites, such as unconsolidated regolith, ices, and atmosphere), calibration for crater-counting chronology, and ground truth for remote sensing measurements of meteorite parent bodies. Meteoritics also relates to spacecraft flyby, rendezvous, and lander missions that do not necessarily return samples. Specific illustrations of this mutual relationship, based on a selection of recent or planned spacecraft missions include: Identifying source asteroid classes for ordinary and carbonaceous chondrites and reconstructing their thermal and collisional histories (Galileo, NEAR, Clementine II, and Muses-C); determining the extent to which cometary dust and interstellar grains are found as interplanetary dust particles and assessing volatile abundances, isotopic compositions, and molecular species in cometary nuclei (Stardust and Rosetta); understanding the compositions of ancient Martian crust and the mantle sources for SNC meteorites, as well as inventorying the planet's volatile reservoirs and interactions (Mars Pathfinder, Mars Global Surveyor, and Mars Volatiles and Climate Surveyor); assessing whether lunar meteorites provide a more representative chemical sampling of the highlands crust and of mare volcanism than do Apollo samples (Galileo, Clementine, and Lunar Prospector). Spaceflight is the first priority of the space agencies that fund most research on extraterrestrial materials, and the continued level of support for such research may be linked, in part, to its use in exploration by spacecraft.  相似文献   
278.
The motion has been studied of a particle in a gravitational field perturbed by radiation pressure. By combining the formulation in the physical space variables with the KS variables we obtained explicit evidence for the existence of a surface of stable circular orbits with centers on an axis through the primary body. Furthermore, the effects of a sharp shadow on the two-dimensional unstable parabolic orbits were investigated. It was found that they do not survive the introduction of a shadow.  相似文献   
279.
Repeated searches for optical evidence of lightning across Venus nightside regions reported as exhibiting almost incessant activity have failed to detect any evidence of lightning. Owing to the extensive nature of these investigations, the negative results contribute strongly to the interpretation that the plasma noise initially attributed to a lightning source is instead stimulated by interaction of the solar wind and draped interplanetary magnetic field with the nightside ionosphere.  相似文献   
280.
It is proved in this article that under the condition defined in Equation (6), whent, at least two particles must escape from a Newtonian gravitational system of positive energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号