首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   4篇
  国内免费   7篇
测绘学   4篇
大气科学   70篇
地球物理   95篇
地质学   113篇
海洋学   39篇
天文学   80篇
综合类   3篇
自然地理   36篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   13篇
  2014年   11篇
  2013年   24篇
  2012年   10篇
  2011年   19篇
  2010年   17篇
  2009年   19篇
  2008年   31篇
  2007年   13篇
  2006年   12篇
  2005年   16篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   7篇
  2000年   11篇
  1999年   13篇
  1998年   9篇
  1997年   13篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1983年   12篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1962年   2篇
  1898年   2篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
1.
A series of enclosed ecosystem experiments were conducted in a land-based tank near the seaside of West Xiamen Harbor. The results of experiments conducted in different seasons and years showed a repeatable phytoplankton succession. In this relatively stable ecosystem with added nutrients and trace metals, diatoms dominated initially, dinoflagellates dominated in the later stage, and dinoflagellate red tides eventually occurred. Vitamin B12 enrichment may speed up this succession process. Stirring the water column could stop this process. Soluble Mn at a level of 3–4 μg/L in seawater, which also is the existing concentration of soluble Mn in Xiamen Harbor seawater, is sufficient for the multiplication of algae and occurrence of red tide. The present study showed that excessive soluble Mn in Xiamen Harbor cannot cause red tide, and that Fe was one of the important factors causing diatiom red tide in this present study. Project 39570145 supported by NSFC.  相似文献   
2.
St. Cyr  O. C.  Kaiser  M. L.  Meyer-Vernet  N.  Howard  R. A.  Harrison  R. A.  Bale  S. D.  Thompson  W. T.  Goetz  K.  Maksimovic  M.  Bougeret  J.-L.  Wang  D.  Crothers  S. 《Solar physics》2009,256(1-2):475-488

Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous (i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.

  相似文献   
3.
Global monsoons in the mid-Holocene and oceanic feedback   总被引:10,自引:3,他引:10  
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.  相似文献   
4.
5.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   
6.
7.
8.
Brynildsen  N.  Brekke  P.  Fredvik  T.  Haugan  S. V. H.  Kjeldseth-Moe  O.  Maltby  P.  Harrison  R. A.  Pike  C. D.  Rimmele  T.  Thompson  W. T.  Wilhelm  K. 《Solar physics》1998,179(2):279-312
We have studied the dynamics in the sunspot transition region between the chromosphere and the corona and investigated the extension of the flow field into the corona. Based on EUV spectra of a medium size sunspot and its surroundings, NOAA 7981, observed with CDS and SUMER on SOHO, we derive line-of-sight velocities and study the line profiles for a series of emission lines.The flow field in the low corona is found to differ markedly from that in the transition region. In the transition region the relative line-of-sight velocity shows an upflow in the umbra and relatively large areas with downflow that cover part of the penumbra. The spatial extent of these areas with upflow and downflow increases with increasing temperature in the transition region, but the whole flow field changes character as the temperature increases from the upper transition region to the low corona. Based on a calibration of the SUMER wavelength scale we find that the entire sunspot transition zone appears to be moving downwards towards the chromosphere. The relation between this finding and the general tendency for transition-region lines to show a net red shift is discussed.Several of the transition-region spectral line profiles are observed to show two line components with Gaussian shape and line-of-sight velocities that differ markedly. Several of the line profiles that are composed of two spectral line components occur close to the dividing line between up- and downflow. A discussion of this observation is presented. In small regions with spatial extent of a few arc sec we detect enhanced continuum emission underlying explosive events. The similarities between explosive events with continuum emission and the moustaches observed in H close to sunspots are so striking that we are tempted to introduce the notation transition-region moustaches.  相似文献   
9.
Properties of the light saturation curve of photosynthesis and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity are shown to change qualitatively in a natural population of marine phytoplankton during a spring bloom. Evidence is presented to show that these changes constitute photoadapative responses to increasing irradiance. As irradiance increased during the bloom, both the level of light-saturated photosynthesis (Pm) and the initial slope of the light saturation curve (α = photosynthetic efficiency) increased whether those parameters were normalized to chlorophyll a concentration (Pmb, αb) or to cell numbers (Pmc, αc). The magnitudes of these changes were such that Ik (= Pm/α, the photoadaptation parameter) did not change, but Im, the light intensity at which photosynthesis becomes saturated, increased. RuBPC activity, both chlorophyll a (RuBPCb) and cell number normalized (RuBPCc), also increased during the bloom. We suggest that these adaptations were achieved by simultaneously increasing the number of photosynthetic units, proportionately decreasing the photosynthetic unit size, and increasing both the concentrations of the enzymes of the dark reactions and possibly also of photosynthetic electron transport components.We also observed diminished levels of photoinhibition in the high light adapted cells late in the bloom and have suggested that this was a consequence of the same suite of physiological changes.In situ carbon fixation per cell increased during the bloom whereas no change occurred in this parameter when normalized to chlorophyll a concentration. Although these photoadaptive responses thus permitted carbon to be fixed in situ more rapidly per cell, at a constant efficiency with respect to investment of energy in the photosynthetic apparatus, they did not result in a change in growth rate. Based on consideratios of the role of time scale in physiological adaptation, however, it is suggested that the observed alterations in photosynthesis with increasing irradiance might permit a cell to more rapidly fill an energy quota for division, possibly an advantage in a mixing environment in which energy is patchily distributed, both spatially and temporalyy.Phosphoenolpyruvate carboxylase activity when normalized to chlorophyll a (PEPCb) did not change during the bloom while chlorophyll a normalized dark carbon fixation decreased sharply and was quantitatively small compared to PEPCb. On this basis and considering that RuBPCb increased during the bloom, it is suggested that, although PEPC may be involved in dark carbon fixation, its most important quantitative role is probably an indirect one in light dependent photosynthesis.We have also considered the relevance of laboratory results on photoadaptation to interpretations of field studies and have suggested that batch culture studies must be treated with caution but that turbidistat and semi-continuous methods provide reasonable simulations of natural conditions.  相似文献   
10.
This special issue is comprised of 13 papers, including this overview, and focuses on the synthesis of the Joint Global Ocean Flux Study (JGOFS) in the North Pacific which took place from 1997 through 2003. The effort was led by the JGOFS North Pacific Synthesis Group, with the aim of quantifying CO2 drawdown by physical and biological pumps in the North Pacific by identifying and studying the regional, seasonal to inter-annual variations in the key processes, and understanding their regulating mechanisms. Emphasis was placed on the similarities and differences of the biogeochemical regimes in the eastern and western subarctic Pacific. Effort was also made to address the future research directions which arose from the scientific findings during the North Pacific JGOFS process study. A brief overview of the papers from view points of CO2 drawdown by physical and biological pumps, spatial variability, and temporal variability from seasonal to decadal scales is made, followed by suggestions for the directions of future research. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号