首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   12篇
  国内免费   6篇
测绘学   38篇
大气科学   59篇
地球物理   53篇
地质学   182篇
海洋学   40篇
天文学   70篇
综合类   4篇
自然地理   22篇
  2021年   6篇
  2020年   4篇
  2018年   20篇
  2017年   20篇
  2016年   17篇
  2015年   13篇
  2014年   16篇
  2013年   29篇
  2012年   13篇
  2011年   27篇
  2010年   13篇
  2009年   32篇
  2008年   16篇
  2007年   23篇
  2006年   26篇
  2005年   15篇
  2004年   14篇
  2003年   17篇
  2002年   17篇
  2001年   17篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   10篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   4篇
  1987年   11篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1950年   1篇
排序方式: 共有468条查询结果,搜索用时 15 毫秒
31.
Large‐scale simulations of flow in deformable porous media require efficient iterative methods for solving the involved systems of linear algebraic equations. Construction of efficient iterative methods is particularly challenging in problems with large jumps in material properties, which is often the case in geological applications, such as basin evolution at regional scales. The success of iterative methods for this type of problems depends strongly on finding effective preconditioners. This paper investigates how the block‐structured matrix system arising from single‐phase flow in elastic porous media should be preconditioned, in particular for highly discontinuous permeability and significant jumps in elastic properties. The most promising preconditioner combines algebraic multigrid with a Schur complement‐based exact block decomposition. The paper compares numerous block preconditioners with the aim of providing guidelines on how to formulate efficient preconditioners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
32.
In this study, the electrical conductivity of synthetic and natural orthopyroxene single crystals containing various amounts of hydrogen and cation impurities (i.e., Al, Fe) was investigated using impedance spectroscopy. A new cell was developed to measure conductivities of submillimeter-sized oriented single crystals with impedances up to 1010?Ohm. In contrast to previous studies on olivine and orthopyroxene, results from this study do not show a simple correlation of the concentration of protons and the electrical conductivity. Instead, the electrical conductivity appears to be a complex function of iron content, hydrogen content, crystal orientation and concentration of other impurity cations and shows similar activation energies to hydrogen diffusion. Model calculations considering proton conduction rather exclude than suggest orthopyroxene as responsible phase for high-conductivity regions in the Earth’s upper mantle.  相似文献   
33.
34.
35.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   
36.
The rate of palagonitization of three chemically different types of basaltic glasses has been determined experimentally as a function of temperature (20–90 ° C) and time (3.5–14 months) in both fresh and saline water. Between ca. 40 ° C and 70 ° C there is a marked increase in the rate of transformation of the glasses, especially those of alkali basalt composition. The alteration process also accelerates after ca. 10 months at temperature higher than 70 ° C. These phenomena are possibly related to stepwise losses of the major elements, and minimum activation temperatures for the oxide/ion—water metasomatism.  相似文献   
37.
The formation of colloids during the weathering of phyllite was investigated by exposing ground phyllite to Milli-Q water. Secondary mineral colloids of 101–102 nm were detected in significant concentrations. At pH of about 8.5, the solution concentration of these colloids reached up to 10 mg/L (however, acidification to pH 4.0 prevented the formation of the colloids). The mineralogical composition of the secondary mineral colloids is assumed to be a mixture of ferrihydrite, manganese oxyhydroxides, aluminosilicates, amorphous Al(OH)3 and gibbsite with possible additions of iron silicates and␣iron-alumino silicates. The colloids were stable over longer periods of time (at least several weeks), even in the presence of suspended ground rock. Direct formation of iron-containing secondary mineral colloids at the rock–water interface by the weathering of rock material is an alternative to the well-known mechanism of iron colloid formation in the bulk of water bodies by mixing of different waters or by aeration of anoxic waters. This direct mechanism is of relevance for colloid production during the weathering of freshly crushed rock in the unsaturated zone as for instance crushed rock in mine waste rock piles. Colloids produced by this mechanism, too, can influence the transport of contaminants such as actinides because these colloids have a large specific surface area and a high sorption affinity.  相似文献   
38.
The Ag---Pb---Zn---Cu---Au mining district of Santa María de La Paz has been extensively exploited for approximately 200 years. Consequences of these activities are several deposits of tailings with high As and heavy metal concentrations, which are completely unstable. The climate is semiarid and as the dumps have no protective cover, material from the dumps is dispersed by strong winds. It is also washed out during seasonally heavy rainfalls. By these processes approximately 100 km2 of surrounding have been contaminated by dump material. The As and heavy metal content of the soils was determined as well as their level in crops (Zea Maize) from agricultural lands in the vicinity of the dumps. In the direction of prevailing winds concentrations up to 1000 ppm Zn, 400 ppm Pb, 16 ppm Cd, 550 ppm Cu and 300 As have been detected in top soils. Using fuzzy cluster analysis the different contamination sources could be identified. Grains of corn from contaminated sites showed no critical concentrations, but leaves which are also used tor fodder, have As-concentrations up to 20 ppm.  相似文献   
39.
Twelve apatite samples from igneous and metamorphic rocks from the Black Forest and igneous rocks from the Kaiserstuhl were analysed for their REE content. The ΣREE range from 0.116 to 1.69 wt.%; the lowest values were found in the metamorphic rocks. All apatites from the various parent rocks show a general enrichment of the lighter rare earths over the heavier and their chondrite-normalized rare earth patterns exhibit a more or less pronounced negative Ce anomaly. This Ce depletion is accompanied by relatively low La and Pr values. In addition, the apatites from igneous rocks from the Black Forest show a marked negative Eu anomaly. An explanation is offered for the simultaneous occurrence of a negative Ce and a negative Eu anomaly in one investigated rock system. The negative Ce anomaly is attributed to the occurrence of phases enriched in Ce (e.g., monazite, allanite) which crystallized prior to or simultaneously with apatite. The negative Eu anomaly in these magmatic apatites most probably is caused by discrimination of Eu2+ from the apatite lattice. The result of this discrimination is a selective Eu enrichment in the later crystallizing feldspars, plagioclase and orthoclase. At least in this case, the positive Eu anomaly in feldspars is not a reliable indicator of low oxygen fugacity during their crystallization; the Eu depletion of the earlier crystallized apatites is preferable for this purpose.  相似文献   
40.
Carbon storage and catchment hydrology are influenced both by land use changes and climatic changes, but there are few studies addressing both responses under both driving forces. We investigated the relative importance of climate change vs. land use change for four Alpine catchments using the LPJ-GUESS model. Two scenarios of grassland management were calibrated based on the more detailed model PROGRASS. The simulations until 2100 show that only reforestation could lead to an increase of carbon storage under climatic change, whereby a cessation of carbon accumulation occurred in all catchments after 2050. The initial increase in carbon storage was attributable mainly to forest re-growth on abandoned land, whereas the stagnation and decline in the second half of the century was mainly driven by climate change. If land was used more intensively, i.e. as grassland, litter input to the soil decreased due to harvesting, resulting in a decline of soil carbon storage (1.2−2.9 kg C m–2) that was larger than the climate-induced change (0.8–1.4 kg C m−2). Land use change influenced transpiration both directly and in interaction with climate change. The response of forested catchments diverged with climatic change (11–40 mm increase in AET), reflecting the differences in forest age, topography and water holding capacity within and between catchments. For grass-dominated catchments, however, transpiration responded in a similar manner to climate change (light management: 23–32 mm AET decrease, heavy management: 29–44 mm AET decrease), likely because grassroots are concentrated in the uppermost soil layers. Both the water and the carbon cycle were more strongly influenced by land use compared to climatic changes, as land use had not only a direct effect on carbon storage and transpiration, but also an indirect effect by modifying the climate change response of transpiration and carbon flux in the catchments. For the carbon cycle, climate change led to a cessation of the catchment response (sink/source strength is limited), whereas for the water cycle, the effect of land use change remains evident throughout the simulation period (changes in evapotranspiration do not attenuate). Thus we conclude that management will have a large potential to influence the carbon and water cycle, which needs to be considered in management planning as well as in climate and hydrological modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号