首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   10篇
  国内免费   2篇
测绘学   3篇
大气科学   26篇
地球物理   52篇
地质学   96篇
海洋学   7篇
天文学   29篇
自然地理   10篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   21篇
  2015年   6篇
  2014年   10篇
  2013年   15篇
  2012年   11篇
  2011年   7篇
  2010年   10篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1963年   1篇
  1958年   1篇
  1955年   1篇
  1917年   1篇
排序方式: 共有223条查询结果,搜索用时 31 毫秒
101.
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 ± 0.025°/dy (41.335 ± 0.005 h) prior to the 2000 perihelion passage, 210.448 ± 0.016°/dy (41.055 ± 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 ± 0.030°/dy (40.783 ± 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 ± 0.012°/dy (40.827 ± 0.002 h) in the interval 2006–2010 following the 2005 perihelion passage. The period decreased by 16.8 ± 0.3 min during the 2000 passage and by 13.7 ± 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 ± 0.003°/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations.The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4–15) pole and longitude system. The possibility of a 180° error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42.We find that a net torque in the range of 0.3–2.5 × 107 kg m2 s?2 acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than ~1° per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.  相似文献   
102.
A mafic sill-like intrusion, ~5?×?30 m, exposed along the eastern shoreline of Kahoolawe Island, Hawaii, represents tholeiitic magma emplaced as diabase among caldera-filling lavas. It differentiated from ~7.8 wt.% MgO to yield low-MgO (2.9 wt.%) vesicular segregation veins. We examined the intrusion for whole-rock and mineral compositions for comparison to Kahoolawe caldera-fill lavas (some also diabasic), to the Uwekahuna laccolith (Kilauea), and to gabbros, diabases, and segregations and oozes of other tholeiitic shield volcanoes (e.g., Mauna Loa and Kilauea lava lakes). We also evaluate this extreme differentiation in terms of MELTS modeling, using parameters appropriate for Hawaiian crystallization environments. Kahoolawe intrusion diabase samples have major and trace element abundances and plagioclase, pyroxene, and olivine compositions in agreement with those in gabbros and diabases of other volcanoes. However, the intrusion samples are at the low-MgO end of the large MgO range formed by the collective comparative samples, as many of those have between 8 and 20 wt.% MgO. The intrusion’s segregation vein has SiO2 53.4 wt.%, TiO2 3.2 wt.%, FeO 13.5 wt.%, Zr 350 ppm, and La 16 ppm. It plots in compositional fields formed by other Hawaiian segregations and oozes that have MgO <5 wt.%—fields that show large variances, such as factor of ~2 differences for incompatible element abundances accompanying SiO2 from ~49 to 59 wt.%. Our MELTS modeling assesses the Kahoolawe intrusion as differentiating from ~8 wt.% MgO parent magma beginning along oxygen buffers equivalent to FMQ and FMQ-2, having magmatic H2O of 0.15 and 0.7 wt.% (plus traces of CO2 and S), and under 100 and 500 bars pressure. Within these parameters, MELTS calculates that <3 wt.% MgO occurs at ~1,086 to 1,060 °C after ~48 to 63 % crystallization, whereby the lesser crystallization percentages and lower temperatures equate to higher magmatic H2O, leading to high SiO2, ~56–58 wt.%. To contrast, greater crystallization is calculated for lower H2O, for which it achieves less SiO2, <55 wt.%. While MELTS reliably predicts SiO2 approaching 58 wt.% for differentiation beyond <4 wt.% MgO, and shows that Kahoolawe intrusion’s segregations and those of Kilauea and Mauna Loa are all reasonably accommodated by the modeled parameters and SiO2 differentiation curves, MELTS fails where it predicts that Fe enrichment is more robust under FMQ than FMQ-2 buffers. That failure not withstanding, MELTS differentiation from liquidus temperatures ~1,205–1,185 °C (depending on the various parameters) gradually increases fO2 (up to ~0.4 log units, as normalized to FMQ) until magnetite crystallizes at ~1,090–1,085 °C, which reduces absolute fO2 ~1 to 1.5 log units. The modeled Kahoolawe intrusion, then, exemplifies how tholeiitic magma differentiation can produce extreme SiO2 and incompatible element compositions, and how Hawaiian segregations from shallow intrusions and lava lakes can be generally modeled under compositional and physical parameters appropriate for Hawaiian tholeiitic magmatism.  相似文献   
103.
Sequestration of CO2 into a deep geological reservoir causes a complex interaction of different processes such as multiphase flow, phase transition, multicomponent transport, and geochemical reactions between dissolved CO2 and the mineral matrix of the porous medium. A prognosis of the reservoir behaviour and the feedback from large-scale geochemical alterations require efficient process-based numerical models. For this purpose, the multiphase flow and multicomponent transport code OpenGeoSys-Eclipse have been coupled to the geochemical model ChemApp. The newly developed coupled simulator was successfully verified for correctness and accuracy of the implemented reaction module by benchmarking tests. The code was then applied to assess the impact of geochemical reactions during CO2 sequestration at a hypothetical but typical Bunter sandstone formation in the Northern German Basin. Injection and spreading of 1.48 × 107 t of CO2 in an anticline structure of the reservoir were simulated over a period of 20 years of injection plus 80 years of post-injection time. Equilibrium geochemical calculations performed by ChemApp show only a low reactivity to the geochemical system. The increased acidity of the aqueous solution results in dissolution of small amounts of calcite, anhydrite, and quartz. Geochemical alterations of the mineral phase composition result in slight increases in porosity and permeability, which locally may reach up to +0.02 and 0.1 %, respectively.  相似文献   
104.
In the future, climate change will strongly influence our environment and living conditions. Weather and Climate simulations that predict possible changes produce big data sets. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. In this paper, the results of the Weather Research and Forecasting model are visualized for two regions. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to 3D visualizations that can be displayed on a desktop computer or in an interactive virtual reality environment is developed. These easy-to-understand visualizations of complex data are the basis for scientific communication and for the evaluation and verification of models as well as for interdisciplinary discussions of the research results.  相似文献   
105.
In this article, different strategies for estimating first-order degradation rate constants from measured field data are compared by application to multiple, synthetic, contaminant plumes. The plumes were generated by numerical simulation of contaminant transport and degradation in virtual heterogeneous aquifers. These sites were then individually and independently investigated on the computer by installation of extensive networks of observation wells. From the data measured at the wells, that is, contaminant concentrations, hydraulic conductivities, and heads, first-order degradation rates were estimated by three 1D centerline methods, which use only measurements located on the plume axis, and a two-dimensional method, which uses all concentration measurements available downgradient from the contaminant source. Results for both strategies show that the true rate constant used for the numerical simulation of the plumes in general tends to be overestimated. Overestimation is stronger for narrow plumes from small source zones, with an average overestimation factor of about 5 and single values ranging from 0.5 to 20, decreasing for wider plumes, with an average overestimation factor of about 2 and similar spread. Reasons for this overestimation are identified in the velocity calculation, the dispersivity parameterization, and off-centerline measurements. For narrow plumes, the one- and the two-dimensional strategies show approximately the same amount of overestimation. For wider plumes, however, incorporation of all measurements in the two-dimensional approach reduces the estimation error. No significant relation between the number of observation wells in the monitoring network and the quality of the estimated rate constant is found for the two-dimensional approach.  相似文献   
106.
The blue crab, Callinectes sapidus, is an ecologically and economically valuable species in Chesapeake Bay. Field surveys and laboratory experiments indicate that blue crab mortality is significant during severe winters. We applied a temperature and salinity-dependent survival model to empirical temperature and salinity data to explore spatial and interannual patterns in overwintering mortality. Harmonic regression analysis and geostatistical techniques were used to create spatially explicit maps of estimated winter duration, average temperature, average salinity, and resulting crab survival probability for the winters of 1990–2004. Predicted survival was highest in the warmer, saline waters of the lower Bay and decreased with increasing latitude up bay. There was also significant interannual variation with survival being lowest after the severe winters of 1996 and 2003. We combine the survival probability maps with maps of blue crab abundance to show how winter mortality may reduce blue crab abundance prior to the start of the harvesting season.  相似文献   
107.
The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.  相似文献   
108.
109.
 Climate variations in four millennium integrations obtained with coupled GCMs are studied from a spectral point of view. It is shown that the bulk of these variations can be described by two distinctly different types of spectra. The type-I spectra, characterized by a high-frequency ω−2 slope (with ω being frequency) and a low-frequency plateau, indicate the dominance of short-term fluctuations in generating climate variations. They are obtained for many atmospheric variables and variables representing predominantly the upper ocean and the high-latitude part of the deep ocean. The time scale, at which the spectra level off, varies from a few days for grid-point time series of atmospheric variables, to a few months for time series of large-scale atmospheric patterns, several years for SST anomalies in the tropical Pacific, and a few decades for variables describing oceanic baroclinic waves. The type-II spectra are obtained in the ocean interior, which is shielded from the fluctuating forcing at the surface. Since the ocean model does not produce oceanic eddies, the disappearance of type-I spectra in the deep ocean indicates that the fluctuating surface forcing does not fully penetrate into the deep ocean. While type-I spectra are supported by observations, type-II spectra might describe a model specific phenomenon and the realism of these spectra is still a open question. Received: 12 January 2000 / Accepted: 14 June 2000  相似文献   
110.
The toxicity and mobility of the redox-active metalloid As strongly depends on its oxidation state, with As(III) (arsenite) being more toxic and mobile than As(V) (arsenate). It is, therefore, necessary to know the biogeochemical processes potentially influencing As redox state to understand and predict its environmental behavior. The first part of this presentation will discuss the quantification of As redox changes by pH-neutral mineral suspensions of goethite [α-FeIIIOOH] amended with Fe(II) using wet-chemical and synchrotron X-ray absorption (XANES) analysis (Amstaetter et al., 2010). First, it was found that goethite itself did not oxidize As(III). Second, in contrast to thermodynamic predictions, Fe(II)–goethite systems did not reduce As(V). However, surprisingly, rapid oxidation of As(III) to As(V) was observed in Fe(II)–goethite systems. Iron speciation and mineral analysis by Mössbauer spectroscopy showed rapid formation of 57Fe–goethite after 57Fe(II) addition and the formation of a so far unidentified additional Fe(II) phase. No other Fe(III) phase could be detected by Mössbauer spectroscopy, EXAFS, scanning electron microscopy, X-ray diffraction or high-resolution transmission electron microscopy. This suggests that reactive Fe(III) species form as an intermediate Fe(III) phase upon Fe(II) addition and electron transfer into bulk goethite but before crystallization of the newly formed Fe(III) as goethite.The second part of the presentation will show that semiquinone radicals produced during microbial or chemical reduction of a humic substance model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) can react with As and change its redox state (Jiang et al., 2009). The results of these experiments showed that these semiquinone radicals are strong oxidants and oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. The oxidation of As(III) depended strongly on pH. More arsenite (up to 67.3%) was oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction, reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In an attempt to understand the observed redox reactions between As and reduced/oxidized quinones present in humic substances, the radical content in reduced AQDS solutions was quantified and Eh-pH diagrams were constructed. Both the radical quantification and the Eh-pH diagram allowed explaining the observed redox reactions between the reduced AQDS solutions and the As.In summary these studies indicate that in the simultaneous presence of Fe(III) oxyhydroxides, Fe(II), and humic substances as commonly observed in environments inhabited by Fe-reducing microorganisms, As(III) oxidation can occur. This potentially explains the presence of As(V) in reduced groundwater aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号