首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   718篇
  免费   14篇
  国内免费   2篇
测绘学   29篇
大气科学   65篇
地球物理   181篇
地质学   268篇
海洋学   64篇
天文学   98篇
综合类   5篇
自然地理   24篇
  2023年   3篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   12篇
  2016年   27篇
  2015年   19篇
  2014年   32篇
  2013年   31篇
  2012年   30篇
  2011年   43篇
  2010年   26篇
  2009年   40篇
  2008年   37篇
  2007年   25篇
  2006年   27篇
  2005年   28篇
  2004年   32篇
  2003年   19篇
  2002年   14篇
  2001年   17篇
  2000年   15篇
  1999年   15篇
  1998年   10篇
  1997年   8篇
  1996年   12篇
  1995年   12篇
  1994年   12篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   9篇
  1986年   4篇
  1985年   10篇
  1984年   8篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有734条查询结果,搜索用时 62 毫秒
231.
A 3-D structural model of the Caribbean-South American plate boundary was constructed by gravity modeling. The model was constrained by four wide-angle seismic refraction sections, Moho depth estimations from receiver functions, and additionally seismological hypocenters, surface geology, and geodynamic information. Density values were calculated from empirical velocity-density functions, and mineralogical-chemical composition considering specific P/T conditions. We tested different structural models for Western and Eastern Venezuela. In the final model, the fit of the measured and modeled gravity fields for a long Caribbean slab in Western Venezuela was better than the fit obtained for a short one. This interpretation is consistent with the constraining data. The slab is interpreted to extend further to the south beneath Northern Colombia and culminates in the area of the seismic cluster of the Bucaramanga nest. The modeling estimates a slab dip angle under Maracaibo and Mérida Andes of 15°, which increases to 32° below 100 km depth. The dip direction of approx. N150°E ± 5 increases lightly eastward. In Eastern Venezuela, considering its short wavelength, lineaments analyzed from gravity data (by curvature methods and Euler deconvolution) seem to be related to shallow structures and density contrast in the Serranía del Interior and not from a deep detached slab beneath the continental crust. It is deduced from modeling results that this slab configuration has a very small influence on the gravity field. The slab was modeled according to the subduction-transform propagation model with purely westward subduction and a slab break off along a vertical dip-slip tear through the lithosphere.  相似文献   
232.
Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate.Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related?The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.  相似文献   
233.
234.
A reversible method is presented to transform waterlogged sediment cores into dry and stable specimens which can go on exhibition or into permanent storage, needing no special precautions. Wet sediment core segments are bath-impregnated with polyethylene glycol of molecular weight 3,350 (PEG 3,350) dissolved in water. The samples are then subjected to a freeze-drying process, during which the PEG forms a stabilising and bonding porous network structure in the capillary system of the sediment. Standard sediment cores at least 1 m long become strong enough to stand upright. Sediment types ranging from muddy deep-sea sediments to very coarse littoral Halimeda sand were successfully stabilised. For standard cores of 10-cm diameters split length-wise, impregnation times vary from 2 weeks for coarse sand to 6–10 weeks for more compacted sediments. With regard to the stability of the samples and the visual clarity of detail, best results were obtained by impregnation with 25 to 60% solutions of PEG 3,350, coarse sediments needing more PEG than finer ones. Colour changes are systematic – the processed samples are lighter in appearance and the contrasts are enhanced, but there is no serious shift in colour tones. The PEG can easily be re-dissolved and washed out of the sediments. Display specimens can thus be made available for research again.  相似文献   
235.
236.
237.
238.
239.
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号