首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   30篇
  国内免费   15篇
测绘学   16篇
大气科学   136篇
地球物理   370篇
地质学   581篇
海洋学   111篇
天文学   159篇
综合类   3篇
自然地理   57篇
  2021年   12篇
  2018年   26篇
  2017年   14篇
  2016年   25篇
  2015年   19篇
  2014年   34篇
  2013年   41篇
  2012年   35篇
  2011年   55篇
  2010年   38篇
  2009年   50篇
  2008年   56篇
  2007年   37篇
  2006年   50篇
  2005年   41篇
  2004年   35篇
  2003年   32篇
  2002年   48篇
  2001年   20篇
  2000年   20篇
  1999年   18篇
  1998年   27篇
  1997年   18篇
  1996年   19篇
  1995年   23篇
  1994年   13篇
  1993年   19篇
  1991年   12篇
  1990年   17篇
  1989年   14篇
  1987年   15篇
  1986年   11篇
  1985年   25篇
  1984年   21篇
  1983年   27篇
  1982年   18篇
  1981年   17篇
  1980年   14篇
  1979年   21篇
  1978年   18篇
  1977年   17篇
  1976年   15篇
  1975年   11篇
  1974年   11篇
  1973年   17篇
  1970年   11篇
  1959年   15篇
  1956年   11篇
  1954年   12篇
  1948年   13篇
排序方式: 共有1433条查询结果,搜索用时 15 毫秒
901.
902.
Carbonate platform drownings are frequent, often synchronous global occurrences, yet explanations for these world-wide events remain unsatisfactory. In the Central Apennines, Lower and Middle Miocene carbonate rocks deposited on a 'temperate' ramp in the Maiella platform margin record two episodes of platform drowning followed by hemipelagic sedimentation, dated as latest Oligocene–Aquitanian (26–23 M a) and as Burdigalian–Langhian (20–16 Ma). A high-resolution stratigraphy, based on strontium- isotopes, allows us to correlate key phases of platform evolution with events recorded in deep water ocean sediments. This paper suggests that high weathering rates and nutrient input in the Mediterranean during the early and middle Miocene –possibly linked to the uplift of the Tibetan region – set the preconditions for platform drowning, which were ultimately caused by rapid eustatic sea-level rises.  相似文献   
903.
It has been hypothesized for quite some time that interplanetary pick-up ions due to energization taking place in the region close to the solar wind termination shock, at some fraction and as an outcome of a complicated chain of processes, eventually are converted into species of the anomalous cosmic-ray particles. For the actual conversion efficiency it is of great importance to know the energy distribution of these pick-up ions upon their arrival at the shock. It turns out that pre-acceleration of these ions during their passage through the heliosphere shall substantially increase their chances to become reflected at the shock into the upstream direction which is a prerequisite for a further climb-up in energy by virtue of Fermi-1 acceleration processes. In this paper we start out from stochastically pre-accelerated pick-up ions and investigate their behaviour at the shock. With the use of adiabatic approaches in the de Hoffman-Teller frame of the shock, we calculate the energy distribution function of the reflected part of pick-up ions. From the calculated distribution functions it turns out that the reflected ions in the average suffer an energy increase by about a factor of 10, still not enough to let them move off the shock by spatial diffusion in the upstream direction. Thus, since converted back into the shock, they can undergo repeated reflections and energy gains till the diffusion-convection limit is reached. As we show in addition, the reflection probability for pick-up ions is about a factor of 10 higher than expected from the present literature and strongly varies with the off-axis angle, pointing to the fact that the termination shock represents a surface with a three-dimensionally varying source strength for the production of anomalous cosmic rays. The ACR source pattern is also expected to vary during the solar cycle and the relevant injection energies are expected to be larger by factors of 10 to 100 than the canonically adopted 1 keV nucl–1.Institute for Problems of Mechanics of the Russian Academy of Sciences, Prospect Vernadskogo 101, 117526, Moscow, Russia.  相似文献   
904.
905.
The embanked floodplains of the lower River Rhine in the Netherlands contain large amounts of heavy metals, which is a result of many years deposition of contaminated overbank sediments. Depending on local sedimentation rates and changing pollution trends in the past, the metal pollution varies greatly between different floodplain sections as well as vertically within the floodplain soil profiles. Maximum metal concentrations in floodplain soils vary from 30 to 130 mg/kg for Cu, from 70 to 490 mg/kg for Pb and from 170 to 1450 mg/kg for Zn. In the present study these metals were used as a tracer to reconstruct sedimentation rates at 28 sites on the lower River Rhine floodplains. The temporal trend in pollution of the lower River Rhine over the past 150 years was reconstructed on the basis of metal concentrations in sediments from small ponds within the floodplain area. Using a one‐dimensional sedimentation model, average sedimentation rates over the past century were determined using an inverse modelling calibration procedure. The advantage of this method is that it uses information over an entire profile, it requires only a limited number of samples, it accounts for post‐depositional redistribution of the metals, and it provides quantitative estimates of the precision of the sedimentation rates obtained. Estimated sedimentation rates vary between about 0·2 mm/year and 15 mm/year. The lowest metal concentrations are found in the distal parts of floodplain sections with low flooding frequencies and where average sedimentation rates have been less than about 5 mm/year. The largest metal accumulations occur in low‐lying floodplain sections where average sedimentation rates have been more than 10 mm/year. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
906.
907.
908.
909.
We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号