首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1359篇
  免费   23篇
  国内免费   15篇
测绘学   16篇
大气科学   136篇
地球物理   370篇
地质学   545篇
海洋学   111篇
天文学   159篇
综合类   3篇
自然地理   57篇
  2021年   12篇
  2018年   26篇
  2017年   14篇
  2016年   25篇
  2015年   18篇
  2014年   34篇
  2013年   40篇
  2012年   33篇
  2011年   53篇
  2010年   37篇
  2009年   49篇
  2008年   54篇
  2007年   36篇
  2006年   46篇
  2005年   38篇
  2004年   34篇
  2003年   31篇
  2002年   47篇
  2001年   19篇
  2000年   20篇
  1999年   16篇
  1998年   27篇
  1997年   16篇
  1996年   19篇
  1995年   23篇
  1994年   12篇
  1993年   19篇
  1991年   11篇
  1990年   16篇
  1989年   14篇
  1987年   14篇
  1986年   12篇
  1985年   24篇
  1984年   21篇
  1983年   26篇
  1982年   18篇
  1981年   17篇
  1980年   14篇
  1979年   21篇
  1978年   18篇
  1977年   17篇
  1976年   15篇
  1975年   11篇
  1974年   11篇
  1973年   17篇
  1970年   11篇
  1959年   15篇
  1956年   11篇
  1954年   12篇
  1948年   13篇
排序方式: 共有1397条查询结果,搜索用时 62 毫秒
11.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
12.
13.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
14.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   
15.
Zusammenfassung Konglomeratische Oberkreidesandsteine im Raum Bad Harzburg wurden auf ihren Geröll- und Leitmineralgehalt hin untersucht. Aus der Leitmineralverteilung ergibt sich die stratigraphische Stellung der Emscher- und Senonvorkommen zueinander; aus der Geröllführung geht hervor, daß der Brockengranit bereits im Oberemscher im Erosionsniveau lag und die Aufrichtungszone mesozoischer Gesteine am Harznordrand auch im Schimmerwaldgebiet bis zum Quadratensenon übertage vorhanden war, obwohl sie heute hier nicht mehr zu finden ist. Ursache dieser Erscheinung ist ein Schollenabbruch aus dem Dach des Ilsenburggranits, der an der Wende Granulaten-Quadratensenon erfolgte und zu einer lokalen Überfahrung der Aufrichtungszone geführt hat. Die geologische Neuaufnahme des Paläozoikums nördlich des Ilsenburggranites stellt die heutigen Lagerungsverhältnisse dieses Gebietes klar; sie werden bei der Rekonstruktion der ursprünglichen Lagerung und des Bewegungsvorganges zugrunde gelegt, dessen Ergebnis die teilweise Überdeckung des Vorlandes ist. Ein ähnlicher Vorgang liegt auch am benachbarten Okervorsprung der Harznordrandlinie vor.Unter Berücksichtigung der Ergebnisse neuer Tiefbohrungen im Subherzyn wird eine Auffassung von Ablauf und Ursachen tektonischer Vorgänge in diesem Raum entwickelt, die der herrschenden Meinung in zahlreichen Punkten widerspricht:Eine echte Faltung des Subherzyns im Mesozoikum, die bisher vermutete starke Nordbewegung der Harzscholle und eine ausschließliche Bindung tektonischer Vorgänge in diesem Gebiet an orogene Phasen wird abgelehnt.Auslösender Vorgang aller tektonischen Erscheinungen im Subherzyn ist eine vertikale Differentialbewegung der Harz- und Vorlandscholle, die sich seit Ausgang des Paläozoikums gleichsinnig, aber mit örtlich und zeitlich wechselnder Intensität, abspielt.  相似文献   
16.
17.
18.
Zusammenfassung Die Schichten, die die 1400 km lange und bis 250 km breite, SSW-NNE streichende Ostkordillere Kolumbiens aufbauen, reichen altersmäßig vom Präkambrium bis ins Quartär. Unter ihnen nehmen die Ablagerungen der Kreide den größten Raum ein. Die größte Mächtigkeit zeigt diese in der Umgebung von Bogotá (Becken von Cundinamarca) mit 16.000 m, nach N sinkt sie allmählich auf 2600 m und gegen das Südende der Kordillere auf wenige hundert Meter ab.Im Becken von Cundinamarca besteht die Kreide zum überwiegenden Teil aus dunklen, bathyalen Schiefertonen, in die sich in mehr oder minder regelmäßigen Abständen Sandsteine, Kalke und andere litorale bis epineritische Schichten einschalten. Bei Berücksichtigung des Fossilinhaltes, vor allem der Ammoniten, ergibt sich, daß die Seichtwasserschichten stets an der Grenze von Stufen oder Unterstufen liegen. Die Absenkung der Kreidegeosynklinale der Ostkordillere erfolgte also zyklisch. Am Beginn jeder Stufe (und Unterstufe) sank sie rasch ab und es bildeten sich bathyale Schiefertone. Dann kam die Absenkung allmählich zum Stillstand, litorale Sedimente rückten ins Beckeninnere vor und vielfach wurde die Sedimentation unterbrochen. Mit Beginn jeder neuen Stufe oder Unterstufe wanderten neue pelagische Faunen in die Geosynklinale ein, während sich die litoralen Faunen mehrere Stufen hindurch erhielten.Aus der gleichartigen lithologischen Beschaffenheit und der nahezu gleichen Mächtigkeit der Stufen läßt sich schließen, daß sie im gleichen Zeitraum von 6 Millionen Jahren (die Unterstufen in 2 Millionen Jahren) abgelagert wurden.Neben den Stufenzyklen lassen sich größere (Großzyklen) von 18–20 Millionen Jahren Dauer erkennen. Sie werden durch tektonische Bewegungen und nachfolgende weiträumige Transgressionen eingeleitet. Diese Großzyklen beginnen mit dem Tithon, Hauterive, Alb und Senon. Die Stufenzyklen setzen in weiten Teilen der Erde gleichzeitig ein, die Großzyklen hingegen gehen wellenförmig über die Erdoberfläche. Es wird deshalb angenommen, daß die Stufenzyklen ihre Ursache in größeren Erdtiefen haben als die Großzyklen.
Within the 1400 kms. long and up to 250 kms. wide SSW-striking Eastern Cordillera of Columbia Precambrian to Recent members are met with. Cretaceous sediments are thickest (Cundinamarca-Basin near Bogota: 16 000 metres). This Cretaceous consists mainly of dark shales with litoral to epineritic sandstones etc.Cyclic subsidence of this geosyncline took place 3-times within about 2 Million years. Megacycles amount to 18–20 Million years. They begin with transgression in Tithonian, Hauterive, Albian and Senonian times.

Résumé Les couches qui forment la cordillère orientale de la Colombie de direction SSW-NNE, sur une longueur de 1400 km et avec une largeur atteignant 250 km, ont un âge qui va du Précambrien au Quaternaire. Les dépots du Crétacé en occupent la plus grande partie; leur épaisseur la plus forte (16.000 mètres) a lieu dans les environs de Bogotá (Bassin de Cundinamarca); elle diminue progressivement vers le Nord jusqu'à 2.600 m, et à l'extrémité sud de la cordillère elle se réduit à quelques centaines de mètres.Dans le bassin de Cundinamarca le Crétacé est formé essentiellement de schistes bathyaux, foncés, entre lesquels s'intercalent à des distances plus ou moins régulières des grès, des calcaires et d'autres strates littorales ou épinéritiques. L'examen des fossiles, en premier lieu les ammonites, montre que les couches de faible profondeur d'eau se trouvent toujours à la limite d'étages ou de sous-étages. La subsidence du géosynclinal crétacé de la cordillère occidentale s'est faite de façon cyclique. Au début de chaque étage (ou sous-étage) la subsidence était rapide et il se formait des schistes bathyaux. Puis la subsidence s'arrêtait peu à peu; des sédiments littoraux envahissaient l'intérieur du bassin et souvent la sédimentation était interrompue. Au début de chaque nouvel étage ou sousétage, des nouvelles faunes pélagiques envahissaient le géosynclinal, tandis que les faunes littorales se maintenaient durant plusieurs étages. De la similitude des propriétés lithologiques et de la puissance sensiblement égale des étages, on peut déduire que ceux-ci se sont déposés au cours d'une période égale à 6 millions d'années (2 millions pour les sous-étages). En plus des cycles d'étages, on peut distinguer des cycles majeurs d'une durée de 18–20 millions d'années. Ils sont amenés par des mouvements tectoniques et les transgressions de grande ampleur qui les suivent. Ces cycles majeurs débutent au Tithonique, é l'Hauterivien, à l'Albien et au Sénonien. Les cycles d'étages débutent en même temps dans de grandes parties du monde; les cycles majeurs par contre se déplacent comme des ondes sur la surface terrestre. C'est pourquoi nous admettons que les cycles d'étages ont leur cause dans des parties plus profondes de la terre que les cycles majeurs.

, SSW NNE. . .
  相似文献   
19.
Zusammenfassung Auf Salina beginnt die vulkanische Tätigkeit mit der Förderung von Labradorit-Andesiten und -Trachyandesiten, die den alten Pollara-Vulkan und den Vulkanstock des Mte. Rivi aufbauen. Der letzte wird von mindestens zwei größeren Vulkanen — dem südwestlichen und dem nordöstlichen Mte. Rivi-Vulkan — zusammengesetzt. Anschließend kam es im Südosten der Insel zu der Extrusion sauerer Laven in Form von Staukuppen und Staurücken (mit rhyodazitischem Chemismus).Im Bereich der alten Rivi-Vulkane und jenem der saueren Laven im SE-Teil von Salina sind marine Brandungsterrassen mit 2- bis 4 m mächtigen, groben Küstenkonglomeraten nachweisbar: sie haben Höhen von maximal + 30 m (NE-Teil von Salina) und + 10 bis + 15 m (SE-Teil der Insel). Da diese beiden Terrassensysteme auch auf anderen Inseln des Archipels ausgebildet sind, wird ihre Entstehung durch eustatische Spiegelschwankungen des Mittelmeeres während des Pleistozäns erklärt: die höheren Terrassen entsprechen dem Tyrrhenien I (Mindel/Riß-Interglazial — oberes Mittelpleistozän), die tieferen dürften dem Monastirien I/II (= Tyrrhenien II — Riß/Würm-Interglazial — mittleres Jungpleistozän) zuzuordnen sein. Der Beginn der vulkanischen Tätigkeit im Bereich des Äolischen Archipels muß damit wesentlich jünger als bisher angenommen angesetzt werden: nämlich nicht im Miozän und Frühpliozän, sondern erst im Quartär beginnend.Im jüngeren Quartär bildeten sich auf Salina etwa gleichzeitig die beiden großen Stratovulkankegel des Mte. dei Porri und der Fossa delle Felci, die nicht basischen Chemismus aufweisen, wie bisher angenommen wurde, sondern von rhyodazitischen Laven und Tuffen zusammengesetzt werden. Sie sind altersmäßig mit dem großen Stratovulkan auf Lipari — dem Mte. S. Angelo — zu parallelisieren.Als jüngstes vulkanisches Ereignis auf Salina fand die Aussprengung des großen Kraters von Pollara und die Förderung quarzlatitischer Bimssteine statt. Diese Bimsstein-Tuffe führen reichlich xenolithische Auswürflinge, unter denen granitische bis dioritische Tiefengesteine, kristalline Schiefer, Marmore, Kalksilikatfelse und thermometamorph sehr wenig veränderte, reichlichglobigerinen-führende mergelige Kalke des Tertiärs besonders auffallen. Als untermeerischer Sockel der Äolischen Inseln ist damit die NW-Fortsetzung der Kalabrisch-Peloritanischen Masse belegt.Der Vulkanismus der Äolischen Provinz ist durch die posthume quartäre Bruchtektonik im Raum der heutigen Tyrrhenis bedingt. Durch diese Schollenbewegungen entstanden Brüche, längs denen sialisch-anatektische Restmagmen pazifischer Sippe empordringen konnten.
The volcanic activity on the island of Salina (Eolian archipelago) began with the eruption of labradorite-andesites and trachyandesites, which compose the old volcano of Pollara and that of Mte. Rivi. Thereupon endogenous domes with rhyodacitic chemism had been formed in the southeastern part of the island.In the region of the above mentioned old volcanoes and domes two old coastlines are developed: the higher is recognizable in the northeastern part of Salina and lies + 30 m above sea-level, the lower one is exposed in the southeastern part of the island and differs between + 10 and + 15 m above sea-level. These old coast-lines are likewise developed on other islands of the Eolian archipelago. By this fact their origin is interpreted by eustatic variations of the sea-level in the Mediterranian during the Pleistocene. The higher coast-lines are corresponding to the Tyrrhenian I (= upper part of the middle-Pleistocene), the lower ones are paralleled with the Monastirian I/II (= Tyrrhenian II = middle part of the upper-Pleistocene). By these facts it becomes apparently, that the volcanic activity in the Eolian archipelago began not in Miocene and lower Pliocene, but only in Quaternary times.The volcanism on Salina continued in the younger Quaternary with the approximately contemporaneous formation of two great strato-volcanoes (Mte. dei Porri and Fossa delle Felci), which are of rhyodacitic, but not of basaltic chemism as hitherto assumed. The youngest volcanic event was the ejection of quartz-latitic pumices and the formation of the great crater of Pollara. These pumice-tuffs are rich in xenolithic ejecta (as for instance granitic and dioritic rocks, gneisses, marbles, calc-silicate rocks formed by contact metamorphism, and slightly altered marly limestones of Tertiary age, rich in globigerines). These xenolithes are the proof, that the base of the Eolian Islands is represented by the continuation of the Calabrian-Peloritanian Massive.The volcanism of the Eolian volcanic province was caused by Quaternary tectonics, which were the result of subsidence of the Tyrrhenian Block. Along the fault fissures sialic-anatectic residual-magmas of Pacific rock suite were erupted.

Résumé L'activité volcanique débute à Salina avec l'éruption d'andésites e trachyandésites à labradorite qui ont formé l'ancien volcan Pollara et le piton volcanique du Mte. Rivi. Ce dernier est composé d'au moins 2 grands volcans, le Mte. Rivi sudoccidental et nord-oriental. Vint en plus dans le sud-est de l'île une extrusion de laves acides en forme de coupoles et de crêtons (à chimisme rhyodacite).Dans la région de l'ancien volcan Rivi et de ces laves acides de la partie SE de Salina, on trouve des terrasses marines formées de conglomérats côtiers grossiers de 2 à 4 m d'épaisseur: leur altitude maximum est de + 30m (NE de Salina) et + 10 m à +15 (SE de l'île). Comme ces 2 systèmes de terrasses se rencontrent également sur d'autres îles de l'archipel, on explique leur origine par des variations eustatiques du niveau de la mer durant le Pléistocène: les terrasses supérieures appartiennent au Tyrrhénien I (Interglaciaire Mindel/Risspartie supérieure du Pléistocène moyen); les terrasses inférieures devraient appartenir au Monastirien I/II (=Tyrrhénien II ⦌- Interglaciaire Riss/Würm — partie moyenne du Pléistocène supérieur). L'activité volcanique dans l'archipel éolien aurait ainsi débuté nettement plus tard qu'on ne l'a considéré jusqu'ici: non pas au Miocène ou au début du Pliocène, mais seulement au Quaternaire.Au Quaternaire récent il s'est formé à Salina presque en même temps les 2 grands stratovolcans du Monte dei Porri et de la Fossa delle Felci, qui n'ont pas un chimisme basique comme on l'admettait jusqu'ici, mais qui sont composés de laves et tuffs rhyodacitiques. Du point de vue de l'âge ils sont à paralléliser avec le grand stratovolcan de Lipari, le Mte. S. Angelo.La manifestation volcanique la plus récente à Salina fut l'explosion du grand cratère de Pollara et l'émission de ponces de composition latitique acide. Ces tuffs contiennent de nombreux xénolithes parmi lesquels on remarque surtout des roches profondes granitiques à dioritiques, des schistes cristallins, des marbres, des roches à silicates calcaires, et des calcaires marneux du Tertiaire, riches en globigérines et très peu thermométamorphisés.Le socle sous-marin des îles éoliennes serait donc le prolongement NW de la masse calabro-péloritaine.Le volcanisme de la province éolienne est causé par la tectonique cassante quaternaire dans le cadre de la Tyrrhénide actuelle. Grâce aux mouvements de ces blocs, des cassures ont pris naissance par lesquelles ont pu monter les magmas résiduels sialiques-anatectiques appartenant à la série pacifique.

Riassunto Sull'isola di Salina (archipelago Eoliano) l'attività vulcanica inizia con l'emissione di lave trachiandesiti- e andesiti-labradoritiche, che formano il vecchio vulcano di Pollara ed il massivo vulcanico del Mte. Rivi. L'ultimo è formato da almeno due grandi vulcani — il vulcano sudovest ed il vulcano nordest di Mte. Rivi — die adesso in maggior parte sono degradati e distrutti. Dopo c'è stata nella parte sudest dell'isola l'estrusione di lave acide, che formano le cupole all'occidente di Lingua (con chimismo riodazitico).Nella zona dei vecchi vulcani di Mte. Rivi e quella delle rocce acide nella parte sudest di Salina sono da constatare terrazze marine con grossi conglomerati litorale della potenza di 2–4 m. L'altitudine di queste terrazze marine è al massimo di + 30 m (parte NE di Salina) e tra + 10 e + 15 m (parte SE dell'isola). Poichè questi due sistemi di terrazze marine si trovano anche sull'altre isole dell'archipelago (Lipari, Panarea, Filicudi) si spiega la loro origine da oscillazioni eustatiche del Mediterraneo durante il Pleistocene: le terrazze superiori corrispondono al Tirreniano I (medio-Pleistocene superiore), le terrazze inferiori forse sono appartenenti al Monastiriano I/II (= Tirreniano II, medio tardo-Pleistocene). L'inizio dell'attività vulcanica nella provincia Eolia perció è più giovane come si pensava finora: cioè non è stato durante il Miocene e Pliocene inferiore, ma soltanto nel Quaternario.Nel Quaternario giovane si formarono a Salina quasi contemporaneamente i due grandi strato-vulcani del Mte. dei Porri e della Fossa delle Felci, che non dimostrano un chimismo basico come è stato scritto finora ma sono composti di lave e tufi riodazitiche. Nell'età essi corrispondono al grande strato-vulcano su Lipari — il Mte. S. Angelo.Il più giovane awenimento vulcanico a Salina è stato la formazione del grande cratere di Pollara con espulsione di pomice quarzlatitica. In questa pomice componenti xenolitici sono abbondanti per esempio tali di graniti, granodioriti, dioriti, scisti cristallini, marmi, rocce a calcare-silicatiche e calcari marnosi tertiari poco alterati termometamorfici con abbondante globigerine. Lo zoccolo sottomarino dell'archipelago Eoliano è così la continuazione ipotetica della massa calabro-peloritanica. Il vulcanismo della provincia Eolia è causato dalla tettonica germanotipica quaternaria nella zona del Tirreno. Per l'effetto dello sprofondamento della massa del Tirreno si formarono grandi faglie, lungo a queste salivano magmi sialici-anatectici pacifici.

. .
  相似文献   
20.
Zusammenfassung Ausgehend von einem Vergleich randnaher Normprofile und der faziellen Analyse eines vollständigen Bohrprofils wird für die Randfazies des Unteren Muschelkalkes ein Sedimentationsmodell entwickelt, das auf der Basis klimatisch und epirogenetisch bedingter Untergliederungen des Profils neue Parallelisierungsmöglichkeiten mit beckenwärtigen Faziesbereichen eröffnet.Hervorstechendste Merkmale des Bohrprofils sind rhythmisches Auftreten von Magnesit — der als sedimentäre Bildung bislang nur in Zusammenhang mit chloridischen Evaporiten bekannt war —, eine sedimentologisch und geochemisch begründete zyklische Gliederung sowie intensive Bioturbation und zugleich durchgehende Vergipsung.Die Zyklen sind formal gekennzeichnet durch Koppelung von tonigem Sandstein mit geringen Eisen- und hohen Magnesiumgehalten einerseits und von rotem Ton und Silt mit hohen Eisen- und niedrigen Magnesiumwerten andererseits. Die Zyklen werden als Wechselfolge von litoralen Sedimentationsphasen in subtropischem Klima und Abschnürungsphasen mit Hungersedimentation in aridem Klima interpretiert. Der syndiagenetisch gebildete Magnesit ist dabei Tonsedimentationsphasen genetisch zugeordnet. Anhand der Verteilung der vier nicht-detritischen Hauptminerale Dolomit, Gips, Anhydrit und Magnesit wird der Diageneseablauf rekonstruiert.Nach einer Diskussion der Bildungsumstände und der Korrelierbarkeit bieten sich die Werksteinzone der Randfazies und die Spiriferinabank der Beckenfazies als sedimentologische Zeitmarke an.
A depositional model of the marginal facies of the Lower Muschelkalk (Middle Triassic) is developed by comparison of near-marginal profiles and a facies analysis of a complete drilling record. It is based upon climatologically and epirogenetically caused partitions of the profile and opens new possibilities of correlation with basinal areas.Significant features of the drilling record are rhythmic occurrences of magnesite in sediments only known in connection with chloridic evaporites, a cyclic deposition based on sedimentological and geochemical criteria, and intensive bioturbation with a gypsification throughout.The cycles are formally marked by the correlation of clayey sandstone with low iron and high magnesium contents at the one hand and of red clay and silt with high iron and low magnesium values at the other hand. The cycles are interpreted as an alternation of littoral sedimentation under a subtropical climate and of stages of lagoonal conditions or emersion under an arid climate. The magnesite syndiagenetically formed is genetically attached to stages of clay sedimentation. The process of diagenesis is reconstructed studying the distribution of four main non-detrital minerals: dolomite, gypsum, anhydrite, and magnesite.After discussion of the depositional conditions and the possibilities of correlation, the Werkstein-Zone of the marginal facies and the Spiriferina-Bank of the basinal facies are thought to be sedimentological time markers.

Résumé Une conception de la formation du facies marginal du Muschelkalk inférieur est développée sur la base d'une comparaison entre les profils normés de la région de sondage Mersch/Luxembourg et l'analyse facielle du profil complet de la carotte de ce sondage. A partir des divisions en partie causées par les climats et par des mouvements épirogénétiques, cette conception donne une nouvelle possibilité de corrélation avec le facies situé plus au centre du bassin sédimentaire.Le forage étudié est caractérisé par la présence rythmique de magnésite, qui, jusqu'à présent, était seulement connu en tant que formation sédimentaire, avec des évaporites, par une répartition cyclique basée sur des observations sédimentologiques et géochimiques et par une bioturbation intensive ainsi qu'une gypsification générale.Les cycles sont caractérisés formellement par le couplage d'un grès argileux à faible teneur en fer et à forte teneur en magnésium d'une part et d'argile rouge à forte teneur en fer et à faible teneur en magnésium d'autre part. Les cycles sont interpretés comme une séquence alternante comprenant une sédimentation littorale en climat subtropical et une sédimentation lagunaire ou d'émersion en climat aride. La magnésite formée syndiagénétiquement est donc coordonnée à une phase sédimentaire argileuse. Le cours de la diagénèse est reconstruit à partir de l'étude de la répartition des quatre minéraux principaux non-détriques: dolomite, gypse, anhydrite et magnésite.A la suite de la discussion des conditions de formation et des possibilités de corrélation la « Werkstein-Zone » du facies marginal et la « Spiriferina-Bank » du facies central apparaissent comme des indicateurs sédimentologiques chronostratigraphiques.

, , , . : , , , , , , . : , , — . , . . , , , , . « » .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号