首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1405篇
  免费   31篇
  国内免费   15篇
测绘学   16篇
大气科学   136篇
地球物理   372篇
地质学   597篇
海洋学   111篇
天文学   159篇
综合类   3篇
自然地理   57篇
  2021年   12篇
  2018年   25篇
  2017年   14篇
  2016年   26篇
  2015年   18篇
  2014年   34篇
  2013年   40篇
  2012年   33篇
  2011年   52篇
  2010年   37篇
  2009年   49篇
  2008年   54篇
  2007年   36篇
  2006年   46篇
  2005年   38篇
  2004年   34篇
  2003年   31篇
  2002年   47篇
  2001年   19篇
  2000年   20篇
  1999年   16篇
  1998年   27篇
  1997年   16篇
  1996年   19篇
  1995年   23篇
  1993年   19篇
  1990年   16篇
  1989年   14篇
  1987年   14篇
  1986年   11篇
  1985年   24篇
  1984年   21篇
  1983年   26篇
  1982年   18篇
  1981年   17篇
  1980年   14篇
  1979年   21篇
  1978年   18篇
  1977年   17篇
  1976年   15篇
  1975年   11篇
  1974年   11篇
  1973年   17篇
  1970年   11篇
  1959年   15篇
  1956年   12篇
  1954年   13篇
  1948年   16篇
  1943年   11篇
  1941年   11篇
排序方式: 共有1451条查询结果,搜索用时 31 毫秒
511.
Optically stimulated luminescence (OSL) dating was applied to proglacial deposits from the Klettgau Valley in northern Switzerland, which is understood to record several phases of glaciation prior to the Last Interglacial. The aim was to provide an independent chronology for the different sedimentary units to understand better the complex depositional history of the region. This time range requires care when assessing the reliability of the luminescence protocols applied. Equivalent doses for fine‐ and coarse‐grain quartz remained below 300 Gy, while dose response curves for both fractions continued to display growth above 500 Gy. Dose recovery tests confirmed the ability of the single aliquot regenerative (SAR) protocol to recover laboratory doses of a similar size to burial doses, and isothermal decay measurements confirmed the stability of the quartz signal. Having passed rigorous testing criteria, quartz OSL ages of up to ~200 ka were considered reliable but significantly underestimated expected ages and prompt a reconsideration of earlier interpretations of the stratigraphy for this site. Rather than representing three separate glaciations, quartz luminescence ages instead suggest that these deposits record up to four independent ice advances during Marine Isotope Stage 6. For both single grain and single aliquot feldspar dating, it was not possible to separate the conflicting influences of anomalous fading and partial bleaching. However, uncorrected feldspar central age model ages were found to be in reasonable agreement with quartz age estimates, and suggest that feldspar ages may still offer useful additional information in this region.  相似文献   
512.
Observational evidence for estuarine circulation in the German Wadden Sea   总被引:1,自引:0,他引:1  
Observational evidence is presented, which corroborates the hypothesis of the general presence of estuarine circulation in the Wadden Sea as put forward in a previous study (Burchard et al., 2008). Current velocity data from moored ADCPs (in the Hörnum Deep south of Sylt Island, 2002-2009) and ship cruises (in several locations in the German Wadden Sea, 2000-2008) were analysed. As a general result, the vertical current profiles above the benthic boundary layer are usually more homogeneous during flood than during ebb, with a pronounced dependence on the cross-shore horizontal density difference. This tidal asymmetry consequently must lead to a residual outflow of Wadden Sea waters in the upper part and a residual inflow of water in the lower part of the water column, thus giving a generic explanation for the obvious net import of suspended sediments from the German Bight into the Wadden Sea.  相似文献   
513.
514.
The Arctic freshwater cycle plays an important role in regulating regional and global climate. Current observations suggest that an intensification of the high-northern latitude hydrological cycle has caused a freshening of the Arctic and sub-Arctic seas, increasing the potential of weakening overturning strength in the Nordic seas, and reducing temperatures. It is not known if this freshening is a manifestation of the current anthropogenic warming and if the Arctic freshwater cycle has exhibited similar changes in the past, in particular as a response to naturally induced periods of warming, for example during the mid-Holocene hypsithermal. Thus, we have used an earth model of intermediate complexity, LOVECLIM, to investigate the response of the Arctic freshwater cycle, during two warm periods that evolved under different sets of forcings, the mid-Holocene and the twenty-first century. A combination of proxy reconstructions and modelling studies have shown these two periods to exhibit similar surface temperature anomalies, compared to the pre-industrial period, however, it has yet to be determined if the Arctic freshwater cycle and thus, the transport and redistribution of freshwater to the Arctic and the sub-Arctic seas, during these two warm periods, is comparable. Here we provide an overview that shows that the response of the Arctic freshwater cycle during the first half of the twenty-first century can be interpreted as an ‘extreme’ mid-Holocene hydrological cycle. Whilst for the remainder of the twenty-first century, the Arctic freshwater cycle and the majority of its components will likely transition into what can only be described as truly anthropogenic in nature.  相似文献   
515.
Medicanes, intense and destructive mesoscale cyclones exhibiting several similarities with tropical hurricanes, are known to struck occasionally the Mediterranean Sea. Thanks to a high-resolution dynamical downscaling effort, we are able to study for the first time the long-term climatology of those rare storms in a systematic way. The distribution of medicanes frequency in space and time is discussed, and the environmental factors responsible for their formation are investigated. We find that medicanes develop in those areas of the Mediterranean region where intrusions of cold air in the upper troposphere can produce configurations of thermodynamical disequilibrium of the atmosphere similar to those associated with the formation of tropical cyclones.  相似文献   
516.
We used a calibrated coupled climate–hydrological model to simulate Meuse discharge over the late Holocene (4000–3000 BP and 1000–2000 AD). We then used this model to simulate discharge in the twenty-first century under SRES emission scenarios A2 and B1, with and without future land use change. Mean discharge and medium-sized high-flow (e.g. Q99) frequency are higher in 1000–2000 AD than in 4000–3000 BP; almost all of this increase can be attributed to the conversion of forest to agriculture. In the twentieth century, mean discharge and the frequency of medium-sized high-flow events are higher than in the nineteenth century; this increase can be attributed to increased (winter half-year) precipitation. Between the twentieth and twenty-first centuries, anthropogenic climate change causes a further increase in discharge and medium-sized high-flow frequency; this increase is of a similar order of magnitude to the changes over the last 4,000 years. The magnitude of extreme flood events (return period 1,250-years) is higher in the twenty-first century than in any preceding period of the time-slices studied. In contrast to the long-term influence of deforestation on mean discharge, changes in forest cover have had little effect on these extreme floods, even on the millennial timescale.  相似文献   
517.
518.
Flood risks of deltaic areas increase because of population growth, economic development, land subsidence and climatic changes such as sea-level rise. In this study, we analyze trends in flood exposure by combining spatially explicit historical, present, and future land-use data with detailed information on the maximum flood inundation in the Netherlands. We show that the total amount of urban area that can potentially become inundated due to floods from the sea or main rivers has increased six-fold during the 20th century, and may double again during the 21st century. Moreover, these developments took, and probably will take, place in areas with progressively higher potential inundation depths. Potential flood damage has increased exponentially over the 20th century (16 times) and is expected to continue to increase exponentially (∼ten-fold by 2100 with respect to 2000) assuming a high economic growth scenario. Flood damages increase more moderately (two- to three-fold by 2100 with respect to 2000) assuming a low growth scenario. The capacity to deal with catastrophic flood losses - expressed as the ratio damage/GDP - will, however, decrease slightly in the low growth scenario (by about 20%). This trend deviates from the historical trend of the 20th century, which shows an increasing capacity to cope with flood damage (almost doubling). Under the high growth scenario the capacity to deal with such losses eventually increases slightly (by about 25%). These findings illustrate that, despite higher projections of potential flood damage, high economic growth scenarios may not necessarily be worse than low growth scenarios in terms of the impact of floods.  相似文献   
519.
Sulfur compounds in volcanic gases are responsible for the global cooling after explosive eruptions and they probably controlled the early evolution of the Earth's atmosphere. We have therefore studied the oxidation state of sulfur in aqueous fluids under the pressure and temperature conditions and oxygen fugacities typical for magma chambers (0.5–3 kbar, 650–950 °C, Ni–NiO to Re–ReO2 buffer conditions). Sulfur speciation was determined by Raman spectroscopy of quenched fluids trapped as inclusions in quartz. Our results show that sulfur in hydrothermal fluids and volcanic gases is much more oxidized than previously thought and in particular, some explosive eruptions may release a significant fraction of sulfur as SO3 or its hydrated forms. In the pressure range from 500 to 2000 bar, the equilibrium constant K1 of the reaction 2H2S + 3O2 = 2SO2 + 2H2O in aqueous fluids can be described by lnK1 = ?(57.1 ± 7.1) + (173,480 ± 7592)T? 1, where T is temperature in Kelvin. The equilibrium constant K2 for the reaction SO2 + ½O2 = SO3 in aqueous fluids, where SO3 may include hydrated forms, such as H2SO4, was found to be strongly pressure dependent, with lnK2 = ?(5.2 ± 5.7) + (19,243 ± 5993)T? 1 at 1500 bar; lnK2 = ?(11.1 ± 1.3) + (25,383 ± 1371)T? 1 at 2000 bar and lnK2 = ?(22.1 ± 2.2) + (37,082 ± 2248)T? 1 at 2500 bar. Our data imply that volcanoes may directly inject hexavalent sulfur in the form of H2SO4 into the atmosphere, not only on Earth, but possibly also on Venus and on Mars, when it was still tectonically active. Remote measurements from satellites may have underestimated the sulfur yield of some recent eruptions. Moreover, the mechanisms of the interaction of volcanic gases with the stratosphere need to be reconsidered.  相似文献   
520.
Lake Markermeer is a large (680?km2), shallow body of water in the middle of the Netherlands, with a mean water depth of 3.6?m. One of the major problems in the lake is its decreasing ecological value which is, among other reasons, caused by a gradual increase of suspended sediment concentration and associated increase of light attenuation in the water column. A thorough understanding of fine sediment dynamics in the lake is a prerequisite for solving this problem. This paper addresses the 3D nature of near-bed sediment dynamics in Lake Markermeer, based on data sampled from a 1-month field experiment in autumn 2007. The campaign involved the collection of 71 bed samples across the lake. At each location, dual-frequency echo soundings were carried out to assess the thickness of the silt layer, and sediment concentration throughout the water column was measured with an Optical Backscatter Sensor (OBS). Moreover, 2-week time series of wave height, water level, current velocities, and near-bed sediment concentration were collected at a single location. The time series of sediment concentration were measured with a regular OBS and an Argus Surface Meter IV (ASM). During the measurement period, flow velocities ranged between 2 and 15?cm/s, wave heights up to 1.2?m were observed and turbidity levels varied between 40?mg/l to more than 300?mg/l. The ASM data generally showed uniform concentration profiles. However, profiles with steep concentration gradients near the bed were found for wave heights above 0.5?m. The field experiments further revealed pronounced 3D structures near the bed during discrete storms. The results are generalized for a wider range of conditions and across the full water depth through application of a 1DV point model, using a two-fraction representation of the grain size distribution. The fine and coarse fractions are found to resuspend rapidly for wind speeds above 5?m/s and 10??2?m/s, respectively, forming a uniform concentration profile if these wind conditions persists. High-concentration (???g/l) layers near the bed, containing the coarse sediment fraction, only occur at the onset and towards the end of a storm, when wind speed changes rapidly. It is under these conditions that horizontal gradients in layer density or thickness can transport considerable fine sediment. This transport provides an additional mechanism for the infill of, for instance, silt traps and navigation channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号