首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4656篇
  免费   1297篇
  国内免费   34篇
测绘学   95篇
大气科学   196篇
地球物理   2421篇
地质学   1886篇
海洋学   319篇
天文学   739篇
综合类   6篇
自然地理   325篇
  2021年   45篇
  2020年   65篇
  2019年   205篇
  2018年   239篇
  2017年   306篇
  2016年   363篇
  2015年   361篇
  2014年   410篇
  2013年   474篇
  2012年   333篇
  2011年   333篇
  2010年   308篇
  2009年   230篇
  2008年   280篇
  2007年   205篇
  2006年   175篇
  2005年   162篇
  2004年   141篇
  2003年   146篇
  2002年   149篇
  2001年   107篇
  2000年   110篇
  1999年   40篇
  1998年   34篇
  1997年   23篇
  1996年   24篇
  1995年   28篇
  1994年   18篇
  1993年   25篇
  1991年   14篇
  1990年   19篇
  1989年   21篇
  1987年   17篇
  1986年   14篇
  1985年   26篇
  1984年   22篇
  1983年   26篇
  1982年   21篇
  1981年   21篇
  1980年   17篇
  1979年   24篇
  1978年   20篇
  1977年   17篇
  1976年   16篇
  1973年   20篇
  1970年   12篇
  1959年   15篇
  1956年   12篇
  1954年   12篇
  1948年   14篇
排序方式: 共有5987条查询结果,搜索用时 15 毫秒
991.
The present study deals with the application of the hierarchical cluster analysis and non‐parametric tests in order to interpret the Gdańsk Beltway impact range. The data set represents concentration values for major inorganic ions (Na+, NH, K+, Mg2+, Ca2+, F, Cl, NO, and SO) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi‐natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdańsk Beltway impact was proven.  相似文献   
992.
This study aims to develop a joint probability function of peak ground acceleration (PGA) and cumulative absolute velocity (CAV) for the strong ground motion data from Taiwan. First, a total of 40,385 earthquake time histories are collected from the Taiwan Strong Motion Instrumentation Program. Then, the copula approach is introduced and applied to model the joint probability distribution of PGA and CAV. Finally, the correlation results using the PGA‐CAV empirical data and the normalized residuals are compared. The results indicate that there exists a strong positive correlation between PGA and CAV. For both the PGA and CAV empirical data and the normalized residuals, the multivariate lognormal distribution composed of two lognormal marginal distributions and the Gaussian copula provides adequate characterization of the PGA‐CAV joint distribution observed in Taiwan. This finding demonstrates the validity of the conventional two‐step approach for developing empirical ground motion prediction equations (GMPEs) of multiple ground motion parameters from the copula viewpoint. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
Various parameters of the most recent surge of the polythermal glacier Comfortlessbreen in northwest Svalbard, have been assessed through a combination of remote sensing and ground observations. Analysis of a digital elevation model time‐series shows a marked change in the geometry of the glacier from quiescence (1990 and earlier) into the late surge phase (2009). The transfer of 0.74 km3 of ice caused up to 80 m of surface drawdown in the reservoir area, above the equilibrium line, whilst ice built up in a spatially concentrated manner in the receiving zone, below the equilibrium line. A ramp of ice, c. 100 m above quiescent level, developed in the lower reaches of the glacier late in the surge. Also in the lower reaches of the glacier, structures attributable to the passage of a kinematic wave are identified and the migration of a surge front on the glacier is thus inferred. In a conceptual model, we consider that a bend in the valley, in which the glacier resides, and convergence with tributary glaciers, to be significant factors in the style of surge evolution. Their flow‐restrictive interference results in slow initial mass‐transfer and the growth of a surge front within 3–4 km of the terminus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
994.
Large wood tends to be deposited in specific geomorphic units within rivers. Nevertheless, predicting the spatial distribution of wood deposits once wood enters a river is still difficult because of the inherent complexity of its dynamics. In addition, the lack of long‐term observations or monitored sites has usually resulted in a rather incomplete understanding of the main factors controlling wood deposition under natural conditions. In this study, the deposition of large wood was investigated in the Czarny Dunajec River, Polish Carpathians, by linking numerical modelling and field observations so as to identify the main factors influencing wood retention in rivers. Results show that wood retention capacity is higher in unmanaged multi‐thread channels than in channelized, single‐thread reaches. We also identify preferential sites for wood deposition based on the probability of deposition under different flood scenarios, and observe different deposition patterns depending on the geomorphic configuration of the study reach. In addition, results indicate that wood is not always deposited in the geomorphic units with the highest roughness, except for low‐magnitude floods. We conclude that wood deposition is controlled by flood magnitude and the elevation of flooded surfaces in relation to the low‐flow water surface. In that sense, the elevation at which wood is deposited in rivers will differ between floods of different magnitude. Therefore, together with the morphology, flood magnitude represents the most significant control on wood deposition in mountain rivers wider than the height of riparian trees. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
Dynamic interaction between river morphodynamics and vegetation affects river channel patterns and populations of riparian species. A range of numerical models exists to investigate the interaction between vegetation and morphodynamics. However, many of these models oversimplify either the morphodynamics or the vegetation dynamics, which hampers the development of predictive models for river management. We have developed a model coupling advanced morphodynamics and dynamic vegetation, which is innovative because it includes dynamic ecological processes and progressing vegetation characteristics as opposed to commonly used static vegetation without growth and mortality. Our objective is to understand and quantify the effects of vegetation‐type dependent settling, growth and mortality on the river pattern and morphodynamics of a meandering river. We compared several dynamic vegetation scenarios with different functional trait sets to reference scenarios without vegetation and with static vegetation without growth and mortality. We find distinct differences in morphodynamics and river morphology. The default dynamic vegetation scenario, based on two Salicaceae species, shows an active meandering behaviour, while the static vegetation scenario develops into a static, vegetation‐dominated state. The diverse vegetation patterns in the dynamic scenario reduce lateral migration, increase meander migration rate and create a smoother floodplain compared to the static scenario. Dynamic vegetation results in typical vegetation patterns, vegetation age distribution and river patterns as observed in the field. We show a quantitative interaction between vegetation and morphodynamics, where increasing vegetation cover decreases sediment transport rates. Furthermore, differences in vegetation colonization, density and survival create distinct patterns in river morphology, showing that vegetation properties and dynamics drive the formation of different river morphologies. Our model demonstrates the high sensitivity of channel morphodynamics to various species traits, an understanding which is required for floodplain and stream restoration and more realistic modelling of long‐term river development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
996.
The effects of afforestation on water resources are still controversial. The aim of this paper is to (i) analyse the hydrological response of an afforested area in the Central Pyrenees and (ii) compare the hydrological response of an afforested area with the response observed in a natural undisturbed forest. The Araguás catchment was cultivated until the 1950s, and then afforested with pines in an effort to control the active degradation processes. The hydrological response was variable and complex, because the discharge was generated by a combination of distinct runoff processes. The hydrological response showed that (i) afforestation produced moderate peak discharges, stormflows and recession limbs, and long rising limbs; (ii) no one single variable was able to explain the hydrological response: rainfall volume and intensity did not explain the hydrological response and antecedent rainfall and initial discharge (indicating antecedent moisture conditions) did play an important role; (iii) seasonal differences were observed suggesting different runoff generating processes; and (iv) the effect of forest cover on peak discharges became less important as the size of the hydrological event increased. The stormflow coefficient showed a clear seasonal pattern with an alternation between a wet period, when the catchment was hydrologically responsive, and a dry summer period when the catchment rarely responded to any event, and two transitional periods (wetting and drying). Compared with a natural forest, the afforested area recorded greater flows and peak discharges, faster response times and shorter recession limbs. Afforestation reduces the water yield and the number of floods compared with non‐vegetated areas and abandoned lands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
998.
European settlement of the Poverty Bay Region resulted in deforestation and conversion of > 90% of the landscape to pastureland. The resulting loss of vegetation triggered a rapid increase in hillslope erosion as widespread landslide complexes and gully systems developed on weak lithologic units in the Waipaoa Basin. To quantify the rate and volume of historic hillslope degradation, we used a 1956–2010 sequence of aerial photographs for a ~16 km2 catchment to map temporal changes in the spatial extent of active landslides. Then we created a ‘turf index’ based on the extent and style of pastoral ground disruption, which correlates with downslope velocity. Based on the movement of trees and other features, we assigned average velocities to the turf classes as follows: (1) minimal disrupted ground: 0.6 m/yr, (2) a mix of disrupted ground and intact blocks: 3.4 m/yr, and (3) no intact blocks or vegetation: > 6 m/yr. We then calculated the average annual sediment flux using these turf‐derived velocities, the width of the landslide‐channel intersection, and an average toe depth of 4.4 ± 1.3 m (mean ± standard deviation [SD]) from 37 field measurements. The resulting catchment averaged erosion rates are (mean ± SD): 29.9 ± 12.9 mm/yr (1956), 28.8 ± 13.7 mm/yr (1969), 13.4 ± 4.9 mm/yr (1979), 17.0 ± 6.2 mm/yr (1988), and 9.9 ± 3.6 mm/yr (2010). Compared with long‐term (post‐18 ka) erosion rates (1.6 mm/yr) and the long‐term uplift rate (~1 mm/yr) for this site, the 50‐year anthropogenically‐driven rate is an order of magnitude larger (~20 mm/yr). Previously, we measured an increase in erosion over the past 3.4 kyr (2.2 mm/yr), and here, we demonstrate this increase could be primarily due to human land‐use change – showing that a century of rapid erosion superimposed on the background geologic rate can profoundly skew the interpretation of erosion rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
999.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
To reveal river channel steepness patterns and variance in settings with significant variation in rock uplift rate, rock erodibility and moving water divides, we present a series of graphical methods to interpret channel profiles. To complement Cartesian χ plots, longitudinal profiles and mapping methods, we introduce a new method based on a radial coordinate system. We map each basin onto polar coordinates in which the radial dimension is χ and the azimuthal coordinate, ?, is calculated with an increment (Δ?) scaled to the distance to neighboring channel heads. The elevation is contoured on this mapping. Average channel steepness is estimated by fitting a conical surface to the elevation. The graph simplifies the comparison of χ and elevation between channels that share a divide, and helps identify spatial changes in drainage area and patterns of erodibility. We apply this approach to derive the uplift pattern in the eastern and southern Central Range of Taiwan, where the high tectonic convergence and uplift rates combined with sub‐tropical climate and frequent typhoons results in high exhumation rate, and well‐developed, detachment‐limited river networks. Additionally, the tectonic activity leads to drainage basin reorganization. We identify examples of divide migration, discrete river capture as well as anomalous steepness that we attribute to local variability in rock erodibility. Estimated basin‐average steepness values show the highest and a near constant value from Hsinwulu basin to Liwu basin in the center of the Island. To the north and south of this region, the values gradually decrease. These estimates show good correlation with the topography of the Central Range and erosion rates derived from in situ 10Be concentrations in river‐borne quartz. We conclude that the basin steepness reflects systematic differences in rock uplift rate and erosion rate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号