首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66934篇
  免费   665篇
  国内免费   1195篇
测绘学   2312篇
大气科学   5049篇
地球物理   12974篇
地质学   28323篇
海洋学   4479篇
天文学   10267篇
综合类   2208篇
自然地理   3182篇
  2020年   143篇
  2019年   138篇
  2018年   7003篇
  2017年   6308篇
  2016年   4066篇
  2015年   598篇
  2014年   538篇
  2013年   1235篇
  2012年   2298篇
  2011年   5331篇
  2010年   4664篇
  2009年   5082篇
  2008年   4200篇
  2007年   5122篇
  2006年   954篇
  2005年   1423篇
  2004年   1472篇
  2003年   1493篇
  2002年   1186篇
  2001年   667篇
  2000年   698篇
  1999年   597篇
  1998年   592篇
  1997年   575篇
  1996年   480篇
  1995年   479篇
  1994年   451篇
  1993年   427篇
  1992年   379篇
  1991年   334篇
  1990年   393篇
  1989年   308篇
  1988年   348篇
  1987年   388篇
  1986年   337篇
  1985年   505篇
  1984年   543篇
  1983年   552篇
  1982年   440篇
  1981年   456篇
  1980年   472篇
  1979年   401篇
  1978年   413篇
  1977年   363篇
  1976年   393篇
  1975年   351篇
  1974年   390篇
  1973年   381篇
  1972年   241篇
  1971年   195篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   
942.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   
943.
This pilot study examines the potential of obtaining a sedimentary record of paleoenvironmental/climatic/hydrologic conditions for saline Redberry Lake in southern Saskatchewan, Canada. The tools are mineralogy, stable isotopes and pigments. The upper meter of an offshore sediment core contains 10 to 20% by weight aragonite (CaCO3), which apparently precipitated in the water column. The 18O and 13C of the bulk aragonite (corrected for content of detrital calcite) vary by 4 to 5. Enrichment in 18O in aragonite is significantly correlated with pigment concentrations (chlorophyll a, phaeophytin). The 18O and pigment data provide evidence for relatively dry and/or warm conditions and high limnetic productivity for the period 2500 to 1500 yrs B.P. After 1500 B.P., the climate was apparently similar to the present, with two episodes of relatively enhanced productivity, dryness and/or warmth, at around 1000 to 900 and 500 to 200 B.P. During the past century, Redberry Lake has decreased approximately 8 m in depth and its salinity has doubled. No clear sedimentary signal was observed in response to these recent hydrologic trends. These changes have not been associated with a significant climate trend in the region, but may have been induced by land use changes in the catchment.This publication is the third of a series of papers presented at the Conference on Sedimentary and Paleolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor for this series.  相似文献   
944.
We report the results of an experiment that produced a residue which closely matches the hydrocarbon component of the Murchison carbonaceous chondrite. This experiment suggests that the parent material of the meteoritic component originated as polycyclic aromatic hydrocarbon species in carbon stars during their later stages of evolution. The experiments also indicate that the pathway from those formation sites to eventual incorporation into the meteorite parent body involved hydrogenation in a plasma in the solar nebula or in H II regions prior to the solar nebula. This model is consistent with what is known about the meteoritic hydrocarbon component including deuterium abundance, the observation of cosmic infrared emission bands best attributed to polycyclic aromatic hydrocarbon molecules, and the inherent stability of these molecules that allows their formation in stars and subsequent survival in the interstellar medium.  相似文献   
945.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   
946.
Parameterizations of single nucleon removal from the electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the theoretical models developed by Baur, Bertulani, Benesh, Cook, Vary, Norbury, and Townsend. They should be very suitable for use in cosmic-ray propagation through interstellar space, Earth's atmosphere, lunar samples, meteorites, spacecraft walls, and lunar and martian habitats.  相似文献   
947.
948.
The second edition of Dr Anthony Hall's undergraduate textbookhas been published some 9 years after the first edition. Thisedition is a significant revision although the approach hasnot changed, and many of the comments of this journal's reviewerof the first edition are still appropriate (Macdonald, 1988).The structure of this edition is largely the same as  相似文献   
949.
The unit-cell dimensions and crystal structure of sillimanite at various pressures up to 5.29 GPa have been refined from single-crystal X-ray diffraction data. As pressure increases, a and b decrease linearly, whereas c decreases nonlinearly with a slightly positive curvature. The axial compression ratios at room pressure are βabc=1.22:1.63:1.00. Sillimanite exhibits the least compressibility along c, but the least thermal expansivity along a (Skinner et al. 1961; Winter and Ghose 1979). The bulk modulus of sillimanite is 171(1) GPa with K′=4 (3), larger than that of andalusite (151 GPa), but smaller than that of kyanite (193 GPa). The bulk moduli of the [Al1O6], [Al2O4], and [SiO4] polyhedra are 162(8), 269(33), and 367(89) GPa, respectively. Comparison of high-pressure data for Al2SiO5 polymorphs reveals that the [SiO4] tetrahedra are the most rigid units in all these polymorphic structures, whereas the [AlO6] octahedra are most compressible. Furthermore, [AlO6] octahedral compressibilities decrease from kyanite to sillimanite, to andalusite, the same order as their bulk moduli, suggesting that [AlO6] octahedra control the compression of the Al2SiO5 polymorphs. The compression of the [Al1O6] octahedron in sillimanite is anisotropic with the longest Al1-OD bond shortening by ~1.9% between room pressure and 5.29 GPa and the shortest Al1-OB bond by only 0.3%. The compression anisotropy of sillimanite is primarily a consequence of its topological anisotropy, coupled with the compression anisotropy of the Al-O bonds within the [Al1O6] octahedron.  相似文献   
950.
Wensink  Hans 《Geologie en Mijnbouw》1997,76(1-2):57-71
Sumba island forms part of a continental fragment, located near the transition of the Sunda Arc to the Banda Arc. It lies within the forearc region, between the active volcanic arc to the north and the Java Trench to the south. Palaeomagnetic studies of Cretaceous (late Albian-early Campanian) Lasipu sediments revealed a mean characteristic remanence (ChRM) direction with D = 42.5°, I = –23.0° and _95 = 6.1°, indicating a palaeolatitude of 12° S. This ChRM is, most likely, a secondary magnetization, possibly caused by the intrusion of the 65-Ma-old Tanadaro granodiorite. This granodiorite gave a mean ChRM direction with D = 44.7°, I = –16.3°, and 95 = 12.2°, pointing to a palaeolatitude of 8.3° S. Eastern Sundaland with Borneo, west and south Sulawesi, and Sumba formed one continental unit in the late Mesozoic, most likely attached to the southeast Asian mainland. Borneo and west and south Sulawesi underwent large counterclockwise (CCW) rotations since the Jurassic with 45° during the Cretaceous, and 45° during the Palaeogene. The Sumba microcontinent, most likely, became detached from eastern Sundaland soon after deposition of the Lasipu sediments. Palaeomagnetic data show that Sumba underwent subsequent clockwise (CW) rotations of up to 96°: 53° between 82 and 65 Ma, and 38° between 65 and 37 Ma. Since the late Eocene, only small rotations occurred. The data indicate that eastern Sundaland, including Sumba, remained close to the equator since the Jurassic. CW rotations occurred in Sundaland both in the north (Indochina) and in the west (Sibumasu) as a consequence of the India – Eurasia collision. The same sense of rotation is seen further east in Sulawesis East Arm and the Philippine Sea plate. Eastern Sundaland (Borneo and west Sulawesi) with CCW rotations is being trapped between these CW rotating plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号