首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5224篇
  免费   547篇
  国内免费   156篇
测绘学   234篇
大气科学   596篇
地球物理   1939篇
地质学   2120篇
海洋学   269篇
天文学   338篇
综合类   187篇
自然地理   244篇
  2023年   3篇
  2022年   6篇
  2021年   18篇
  2020年   7篇
  2019年   10篇
  2018年   433篇
  2017年   373篇
  2016年   250篇
  2015年   152篇
  2014年   113篇
  2013年   117篇
  2012年   648篇
  2011年   421篇
  2010年   114篇
  2009年   130篇
  2008年   119篇
  2007年   110篇
  2006年   128篇
  2005年   831篇
  2004年   871篇
  2003年   653篇
  2002年   175篇
  2001年   70篇
  2000年   45篇
  1999年   15篇
  1998年   5篇
  1997年   18篇
  1996年   11篇
  1994年   2篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1987年   4篇
  1985年   2篇
  1983年   3篇
  1980年   5篇
  1976年   3篇
  1975年   4篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1925年   1篇
排序方式: 共有5927条查询结果,搜索用时 202 毫秒
311.
At the interface between the lower atmosphere and sea surface, sea spray might significantly influence air-sea heat fluxes and subsequently, modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model, to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area, for the cases of two real typhoons from 2006, Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory (KEO), and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without, and that sea spray can enhance the heat fluxes (especially latent heat flux) considerably during a typhoon passage. Consequently, the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally, results from the simulation of the passage of typhoon Soulik (that passed KEO quickly), which included the sea spray effect, were better than for the simulated passage of typhoon Yagi (that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.  相似文献   
312.
We investigated the horizontal distribution of Nemopilema nomurai medusae using a midwater trawl in the southwestern Sea of Japan from September to October of each year from 2006 to 2012. Numerous medusae of this species found in 2006, 2007, and 2009 were mainly distributed far (>40 km) from the mainland of Japan in the western part of the survey area, but were distributed in the stations closest (<25 km) to the mainland in the eastern part, particularly in 2006 and 2009. These distribution patterns were associated with the path of the second branch of the Tsushima Warm Current (TWC) that flows offshore to the west of Oki Islands and usually approaches the mainland of Japan to the east of Oki Islands. Differences in jellyfish distribution across the survey periods were related to the distribution of the second branch being associated with types, position and intensity of eddies in the eastern part of the survey area. Hence, the formations of eddies and consequent variation in the path of the TWC would be responsible for transporting medusae from offshore to near the mainland to the east of Oki Islands. Individuals with large bells accumulated in the northwestern part of the survey area, where a cyclonic eddy was present downstream of the third branch of the TWC. This variation in bell size distribution may be ascribed to differences in the physical and/or biological factors among the three branches of the TWC.  相似文献   
313.
It is well known that Tropical cyclone(TC) activities over the Pacific are affected by El Nino events. In most studies El Nino phenomena have been separated into east Pacific warming(EPW) and central Pacific warming(CPW) based on the location of maximum SST anomaly. Since these two kinds of El Nino have different impacts on Pacific tropical cyclone activities, this study investigates different features of TC activities and the genesis potential index(GPI) during EPW years and CPW years. Four contrib- uting factors, i.e., the low-level absolute vorticity, the relative humidity, the potential intensity and the vertical wind shear, are exam- ined to determine which factors are most important in causing the anomalous TC activities. Our results show that during EPW years in July–August(JA0), TC activities are more frequent with stronger intensity over the Western North Pacific(WNP) and Eastern North Pacific(ENP). The maximum anomaly center of TC activities then drifts eastward significantly in September–October(SO0). However, centers of anomalous TC activity barely change from JA0 to SO0 during CPW years. In January–February–March(JFM1) of the decaying years of warming events, TC frequency and intensity both have positive anomaly over the South Pacific. The anoma- lies in EPW years have larger amplitude and wider spatial distribution than those in CPW years. These anomalous activities of TC are associated with GPI anomaly and the key factors affecting GPI anomaly for each ocean basin are quite different.  相似文献   
314.
Recent observational and experimental evidence for the presence of complex organics in space is reviewed. Remote astronomical observations have detected \(\sim \)200 gas-phased molecules through their rotational and vibrational transitions. Many classes of organic molecules are represented in this list, including some precursors to biological molecules. A number of unidentified spectral phenomena observed in the interstellar medium are likely to have originated from complex organics. The observations of these features in distant galaxies suggests that organic synthesis had already taken place during the early epochs of the Universe. In the Solar System, almost all biologically relevant molecules can be found in the soluble component of carbonaceous meteorites. Complex organics of mixed aromatic and aliphatic structures are present in the insoluble component of meteorites. Hydrocarbons cover much of the surface of the planetary satellite Titan and complex organics are found in comets and interplanetary dust particles. The possibility that the early Solar System, or even the early Earth, have been enriched by interstellar organics is discussed.  相似文献   
315.
The study of galaxy protoclusters is beginning to fill in unknown details of the important phase of the assembly of clusters and cluster galaxies. This review describes the current status of this field and highlights promising recent findings related to galaxy formation in the densest regions of the early universe. We discuss the main search techniques and the characteristic properties of protoclusters in observations and simulations, and show that protoclusters will have present-day masses similar to galaxy clusters when fully collapsed. We discuss the physical properties of galaxies in protoclusters, including (proto-)brightest cluster galaxies, and the forming red sequence. We highlight the fact that the most massive halos at high redshift are found in protoclusters, making these objects uniquely suited for testing important recent models of galaxy formation. We show that galaxies in protoclusters should be among the first galaxies at high redshift making the transition from a gas cooling regime dominated by cold streams to a regime dominated by hot intracluster gas, which could be tested observationally. We also discuss the possible connections between protoclusters and radio galaxies, quasars, and \(\hbox {Ly}\alpha \) blobs. Because of their early formation, large spatial sizes and high total star-formation rates, protoclusters have also likely played a crucial role during the epoch of reionization, which can be tested with future experiments that will map the neutral and ionized cosmic web. Lastly, we review a number of promising observational projects that are expected to make significant impact in this growing, exciting field.  相似文献   
316.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   
317.
We consider the three-dimensional bounded motion of a test particle around razor-thin disk configurations, by focusing on the adiabatic invariance of the vertical action associated with disk-crossing orbits. We find that it leads to an approximate third integral of motion predicting envelopes of the form \(Z(R)\propto [\varSigma (R)]^{-1/3}\), where R is the radial galactocentric coordinate, Z is the z-amplitude (vertical amplitude) of the orbit and \(\varSigma \) represents the surface mass density of the thin disk. This third integral, which was previously formulated for the case of flattened 3D configurations, is tested for a variety of trajectories in different thin-disk models.  相似文献   
318.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   
319.
The line-of-sight direction in the redshifted 21-cm signal coming from the cosmic dawn and the epoch of reionization is quite unique in many ways compared to any other cosmological signal. Different unique effects, such as the evolution history of the signal, non-linear peculiar velocities of the matter etc. will imprint their signature along the line-of-sight axis of the observed signal. One of the major goals of the future SKA-LOW radio interferometer is to observe the cosmic dawn and the epoch of reionization through this 21-cm signal. It is thus important to understand how these various effects affect the signal for its actual detection and proper interpretation. For more than one and half decades, various groups in India have been actively trying to understand and quantify the different line-of-sight effects that are present in this signal through analytical models and simulations. In many ways the importance of this sub-field under 21-cm cosmology have been identified, highlighted and pushed forward by the Indian community. In this article, we briefly describe their contribution and implication of these effects in the context of the future surveys of the cosmic dawn and the epoch of reionization that will be conducted by the SKA-LOW.  相似文献   
320.
We study the neighborhood of the equal mass regular polygon relative equilibria in the N-body probem, and show that this relative equilibirum is isolated among the co-circular configurations (in which each point lies on a common circle) for which the center of mass is located at the center of the common circle. It is also isolated in the sense that a sufficiently small mass cannot be added to the common circle to form a \(N+1\)-body relative equilibrium. These results provide strong evidence for a conjecture that the equal mass regular polygon is the only co-circular relative equilibrium with its center of mass located at the center of the common circle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号