The indicator kriging (IK) is one of the most efficient nonparametric methods in geo-statistics. The order relation problem in the conditional cumulative distribution values obtained by IK is the most severe drawback of it. The correction of order relation deviations is an essential and important part of IK approach. A monotone regression was proposed as a new correction method which could minimize the deviation from original quintiles value, although, ensuring all order relations. 相似文献
Abstract Spatial join indices are join indices constructed for spatial objects. Similar to join indices in relational database systems, spatial join indices improve efficiency of spatial join operations. In this paper, a spatial-information-associated join indexing mechanism is developed to speed up spatial queries, especially, spatial range queries. Three distance-associated join index structures: basic, ring-structured and hierarchical, are developed and studied. Such join indexing structures can be further extended to include orientation information for flexible applications, which leads to zone-structured and other spatial-information-associated join indices. Our performance study and analysis show that spatial-information-associated join indices substantially improve the performance of spatial queries and that different structures are best suited for different applications. 相似文献
Sand damages along the Qinghai-Tibet Railway occur frequently and have spread rapidly since it was completely opened to traffic in 2006. The goal of this study was to understand the effects of sand damages on the railway via meteorological data and in situ observation of wind-blown sand. We selected the Tuotuohe section of this railway as a typical research object, and we systematically investigated its characteristics of sand damages, drift potential, sand-driving wind rose, and their time variation. The direction of sand-drifting wind clearly varies with the season. In winter, the predominant wind blows from the west and lasts for three months, while in summer the frequency of northeasterly wind begins to increase and multi-directional winds also occurs in July. The drift potential in this area is 705.81 VU, which makes this a high-energy wind environment according to Fryberger’s definition. The directional variability (RDP/DP) is 0.84 and the resultant drift potential is 590.42 VU with a resultant direction of 89.1°. 相似文献
The transfer and evolution of stress among rock blocks directly change the void ratios of crushed rock masses and affect the flow of methane in coal mine gobs. In this study, a Lagrange framework and a discrete element method, along with the soft-sphere model and EDEM numerical software, were used. The compaction processes of rock blocks with diameters of 0.6, 0.8, and 1.0 m were simulated with the degrees of compression set at 0%, 5%, 10%, 15%, 20%, and 25%. This study examines the influence of stress on void ratios of compacted crushed rock masses in coal mine gobs. The results showed that stress was mainly transmitted downward through strong force chains. As the degree of compression increased, the strong force chains extended downward, which resulted in the stress at the upper rock mass to become significantly higher than that at the lower rock mass. It was determined that under different degrees of compression, the rock mass of coal mine gobs could be divided, from the bottom to the top, into a lower insufficient compression zone (ICZ) and an upper sufficient compression zone (SCZ). From bottom to top, the void ratios in the ICZ sharply decreased and those in the SCZ slowly decreased. Void ratios in the ICZ were 1.2–1.7 times higher than those in the SCZ.
According to the prevenient theoretical study, the minimum mass ratio for tidal stability of W Ursae Majoris (W UMa) systems is qmin?=(M2/M1)~0.071–0.078. However, the mass ratios of some observed W UMa binaries are smaller than the theoretical minimum mass ratio. Using Eggleton’s stellar evolution code, we study the effects of metallicity and evolution on the minimum mass ratio of W UMa systems (M1=1.2M⊙). We assume that $k_{1}^{2}=k_{2}^{2}$ for the component’s dimensionless gyration radii and that the contact degree is about 70 per cent. We find that the dynamical stability of W UMa binaries depends on the metallicity of W UMa systems. For the W UMa systems at age = 0 Gyr, the distribution of the minimum mass ratio has a fairly wide range, from 0.083 to 0.064, with the metallicity range from Z=0.0001 to 0.03. W UMa systems with Z=0.01 have the smallest value of the minimum mass ratio, which is about 0.064. The existence of low-q systems can be explained partly by the dependence of the dimensionless gyration radius on the metallicity. In addition, the dependence of the minimum mass ratio on the evolution, as suggested by previously work, is confirmed. 相似文献