首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
测绘学   1篇
地球物理   8篇
地质学   9篇
天文学   5篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2004年   1篇
  2001年   1篇
  1986年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
22.
The seismic responses of steel buildings with perimeter moment resisting frames (MRF) with welded connections (WC) are estimated and compared to those of similar buildings with semi-rigid post-tensioned connections (PC). The responses are estimated in terms of ductility reduction factors (R µ,), ductility demands (µ G ) and force reduction factors (R). Two steel model buildings, which were modeled as complex-3D-MDOF systems, were used in the study. Results indicate that the reduction magnitude of global response parameters is larger than that of local response parameters, contradicting the same reduction implicitly assumed in the static equivalent lateral force procedure, implying that non-conservative design may result. The value of 8 for R, suggested in many codes for ductile steel MRF, and the value of 1 suggested in the well known Newmark and Hall procedure for the ratio of R to µ G , cannot be justified. The reason for this is that SDOF systems were used to model actual structures, where higher mode effects, energy dissipation and structural overstrength weren’t explicitly considered. The codes should be more transparent regarding the magnitude and the components involved in the force reduction factors. The seismic performance of steel buildings with PC may be superior to that of the buildings with WC, since their force reduction factors are larger and their ductility demands smaller, implying that PC buildings could be designed for smaller lateral seismic forces. The conclusions of this paper are for the particular structural systems and models considered. Much more research is needed to reach more general conclusions.  相似文献   
23.
Unreinforced Masonry(URM) is the most common partitioning material in framed buildings in India and many other countries.Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction,the general design practice is to treat infills as nonstructural elements and their stiffness,strength and interaction with the frame is often ignored,primarily because of difficulties in simulation and lack of modeling guidelines in design codes.The Indian Standard,like many other national codes,does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames.This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills.Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered.HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames.The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号