首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   6篇
  国内免费   5篇
测绘学   3篇
大气科学   7篇
地球物理   33篇
地质学   84篇
海洋学   60篇
天文学   28篇
自然地理   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   7篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   8篇
  2011年   4篇
  2010年   12篇
  2009年   13篇
  2008年   13篇
  2007年   26篇
  2006年   13篇
  2005年   16篇
  2004年   8篇
  2003年   3篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
211.
Abstract. Java island, regarded as a classic example of island arcs, is built through multi events of Cenozoic arc magmatism produced by the subduction of Indian‐Australian oceanic crusts along the southern margin of Eurasian plate. Regional crustal compositions, subducted slabs, and tectonics determined the spatial‐geochemical evolution of arc magmatism and regional metallogeny. Tertiary geodynamics of island arc was dominated by backarc‐ward migrations of volcanic centers. Only after the Miocene‐Pliocene roll‐back effects of retreating slab, slab detachment, and backarc magmatism took place in central Java. The source of arc magmas is mainly partial melting of mantle wedge, triggered by fluids released from dehydrated slabs. Increasing potassium contents of arc magmas towards the backarc‐side and younger magmas is typical for all magmas, while alkali and incompatible trace elements ratios are characteristics for different settings of volcanic centers. The oceanic nature of crust and the likely presence of hot slab subducted beneath the eastern Java determine the occurrences of adakitic magmas. Backarc magmatism has a deeper mantle source with or without contributions from subduction‐related materials. The domination of magnetite‐series magmatism determines the sulfide mineralization for the whole island. District geology, geodynamics, and magma compositions in turn control particular styles and scales of precious metals concentrations. Deep‐seated crustal faults have focused the locations of overlapping volcanic centers and metalliferous fluids into few major gold districts. Porphyry deposits are mostly concentrated within Lower Tertiary (early stage) volcanic centers in eastern Java which are not covered by younger volcanic centers, and whose sulfides are derived from partial melting of basaltic parental materials. On the other hand, high‐grade low‐sulfidation epithermal gold deposits formed in later stages of arc development and are spatially located within younger volcanic centers (Upper Miocene‐Pliocene) that overlap the older ones. Gold in low‐sulfidation epithermal system is likely to be derived from crustal materials. The overall interacting factors resulting in the petrochemical systematics that are applicable for exploration: 1) early‐stage volcanic centers with high Sr/Y and Na2O/K2O ratios are more prospective for porphyry mineralization, while 2) later‐stage volcanic centers with high K2O, total alkali, and K2O/Na2O ratios are more prospective for low‐sulfidation epithermal mineralization.  相似文献   
212.
Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts.Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks.Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios.The primitive basalts have: 206Pb/204Pb 18.09–18.34, 207Pb/204Pb 15.5, 208Pb/204Pb 37.6–37.9, 87Sr/86Sr 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.Publication authorized by the Director, U.S. Geological Survey  相似文献   
213.
In the southwestern Okhotsk Sea, the cold water belt (CWB) is frequently observed on satellite images offshore of the Soya Warm Current flowing along the northeastern coast of Hokkaido, Japan, during summertime. It has been speculated that the CWB is upwelling cold water that originates from either subsurface water of the Japan Sea off Sakhalin or bottom water of the Okhotsk Sea. Hydrographic and chemical observations (nutrients, humic-type fluorescence intensity, and iron) were conducted in the northern Japan Sea and southwestern Okhotsk Sea in early summer 2011 to clarify the origin of the CWB. Temperature–salinity relationships, vertical distributions of chemical components, profiles of chemical components against density, and the (NO3 + NO2)/PO4 relationship confirm that water in the CWB predominantly originates from Japan Sea subsurface water.  相似文献   
214.
A comparative study of ecosystems and biogeochemistry at time-series stations in the subarctic gyre (K2) and subtropical region (S1) of the western North Pacific Ocean (K2S1 project) was conducted between 2010 and 2013 to collect essential data about the ecosystem and biological pump in each area and to provide a baseline of information for predicting changes in biologically mediated material cycles in the future. From seasonal chemical and biological observations, general oceanographic settings were verified and annual carbon budgets at both stations were determined. Annual mean of phytoplankton biomass and primary productivity at the oligotrophic station S1 were comparable to that at the eutrophic station K2. Based on chemical/physical observations and numerical simulations, the likely “missing nutrient source” was suggested to include regeneration, meso-scale eddy driven upwelling, meteorological events, and eolian inputs in addition to winter vertical mixing. Time-series observation of carbonate chemistry revealed that ocean acidification (OA) was ongoing at both stations, and that the rate of OA was faster at S1 than at K2 although OA at K2 is more critical for calcifying organisms.  相似文献   
215.
The selenium content of fifty two geochemical reference samples, issued by several reference material producers (ANRT, GIT-IWG, USGS, NIST and GSJ) has been determined by continuous hydride generation and atomic absorption spectrometry. Selenium(VI) in the digested solutions was pre-reduced to selenium(IV) by heating in 6 mol l−1 HCl solution. The limit of detection was 3 ng g−1 selenium in common geological samples. Some samples which contain a large amount of heavy metals were analysed by the standard addition technique. The agreement between the reported results and published data is satisfactory.  相似文献   
216.
The Utanobori gold deposit is a low‐sulfidation, epithermal vein‐type deposit located in northern Hokkaido, Japan. The deposit is hosted by conglomerate, sandstone, and tuff of the Middle to Late Miocene Esashi Formation. These rocks were hydrothermally altered. Silica sinters and quartz‐adularia veins are common in the deposit. The quartz‐adularia veins either contain a ginguro band, which corresponds to the main gold‐bearing vein (Type 1 Veins), or do not contain a ginguro band but contain minor adularia (Type 2 Veins). Type 1 Veins are divided into three stages with 12–14 substages. Ore minerals identified include electrum, naumannite, chlorargyrite, bromargyrite, an unidentified Fe‐Sb mineral, and an Fe‐(Sb)‐As mineral. These ore minerals formed in the main mineralization stages I (bands I‐b and I‐d) and II (band II‐a). Scanning electron microscopy with cathodoluminescence images show that cathodoluminescence‐dark microcrystalline quartz exhibiting colloform (ghost‐sphere) texture is closely associated with ore minerals in the Type 1 Vein and Type 2 Vein, and the Al and K contents of such quartz are commonly >1000 ppm. This indicates that the ore minerals were crystallized from alkaline, silica‐saturated fluids at temperatures <200°C, which initially deposited amorphous silica that was recrystallized to microcrystalline quartz. The average Au content of electrum is 52.5 at% Au (n = 10), 65.7 at% Au (n = 20), and 55.5 at% Au (n = 5) in bands I‐b, I‐d, and II‐a, respectively, of Type 1 Veins. The δ34SCDT values of two fine‐grained disseminated pyrites in the altered conglomerate and bedded tuff in the argillic altered zone are ?4.3 and ?4.2‰. Ar‐Ar dating on adularia yielded 13.6 ± 0.06 Ma, 13.6 ± 0.07 Ma, and 13.6 ± 0.06 Ma for the stages I, II, and III of the Type 1 Vein, respectively. K‐Ar ages determined on adularia in the silica sinter and on whole‐rock of glassy rhyolite of the Esashi Formation are 15.0 ± 0.4 Ma and 14.6 ± 0.4 Ma, respectively. These radiometric ages indicate that silica sinter associated with the rhyolitic volcanic rocks formed prior to the main gold mineralization.  相似文献   
217.
The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate earlier formed intrusive rocks in the Southwest prospect, possibly coeval to the earliest “dark diorite” intrusion in the Sto. Tomas II deposit. In addition, the range of δ34S of sulfide minerals from +1.8‰ to +5.1‰ in the Southwest prospect closely overlaps with the rest of the porphyry copper and epithermal deposits in the Sto. Tomas II deposit and its vicinity. This indicates that the sulfides may have formed from a homogeneous source of the porphyry copper deposits and epithermal deposits in the Sto. Tomas II orebody and its vicinity. The evidence presented in this work proves that the porphyry copper‐type veinlets and the adjacent potassic alteration in the Southwest prospect are formed earlier and at a shallower level in contrast with the other porphyry deposits in the Baguio District.  相似文献   
218.
The Joint FAO/WHO/IOC ad hoc Expert Consultation on Biotoxins in Molluscan Bivalves performed risk assessments for a number of biotoxins present in bivalve molluscs. For performing risk assessments, the Expert Consultation categorized the biotoxins into eight distinct groups based on chemical structure. The Expert Consultation established LOAELs for the azaspiracid (AZA), okadaic acid (OA), saxitoxin (STX), and domoic acid (DA) toxin groups. The derived provisional acute RfDs for the AZA, OA, STX, and DA toxin groups were 0.04 μg/kg bw, 0.33 μg/kg bw, 0.7 μg/kg bw, and 100 μg/kg bw, respectively. For the yessotoxin (YTX) group, a NOAEL was established, based on animal studies. Applying a safety factor of 100, a provisional acute RfD of 50 μg/kg bw was suggested for the YTX group. The Expert Consultation considered that the database for cyclic imines, brevetoxins, and pectenotoxins was insufficient to establish provisional acute RfDs for these three toxin groups.  相似文献   
219.
Geochemical studies were conducted on the hydrothermally altered granitic rocks in the Ranong and Takua Pa tin‐fields in southern Thailand in order to investigate the mode of occurrence of REE (rare earth elements), with emphasis placed on a potential REE resource associated with granitic rocks in the Southeast Asian Tin Belt. The total REE (ΣREE) content of altered granitic rocks ranges from 130 to 350 ppm at Haad Son Paen (which is presently mined for kaolin clay) in the Ranong tin‐field, and that of altered granitic rocks and kaolinite veinlets reaches up to 424 ppm and 872 ppm, respectively, at Nok Hook in the Takua Pa tin‐field. Rare earth elements in the altered granitic rocks and kaolinite veinlets show a relatively flat chondrite‐normalized pattern, thus enriched in heavy REE compared with the original granitic rocks and their weathered crusts. At Nok Hook (Takua Pa), the ΣREE content of kaolinite separated from an altered granitic rock by elutriation is 1313 ppm, a ΣREE amount about four times higher than that of whole‐rock composition of the altered granitic rock. Chondrite‐normalized REE patterns of the elutriated kaolinite and of the altered granite are relatively flat. Sequential extraction experiments suggest that 41 and 85 percent of REE are present as ion exchangeable‐form in the altered granitic rock, and in the kaolinite veinlets, respectively. In addition, more than 90% of REE in the kaolinite veinlets are present as the acid‐soluble state. On the other hand, the ΣREE content of kaolinite veinlets and of the kaolinite concentrated by elutriation from an altered granitic rock at Haad Som Paen (Ranong) is 70 ppm and 75 ppm, respectively, thus enrichment of REE in kaolinite was not confirmed. In addition, by the sequential extraction experiments, 23% and 4% of REE were extracted from the altered granitic rock and the kaolinite veinlets at Haad Som Paen. In the altered granitic rocks at Haad Som Paen, REE are present as refractory phases, and REE in the acid‐soluble states had been leached by hydrothermal fluid.  相似文献   
220.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号