全文获取类型
收费全文 | 5132篇 |
免费 | 1582篇 |
国内免费 | 758篇 |
专业分类
测绘学 | 191篇 |
大气科学 | 1182篇 |
地球物理 | 1573篇 |
地质学 | 2421篇 |
海洋学 | 715篇 |
天文学 | 241篇 |
综合类 | 524篇 |
自然地理 | 625篇 |
出版年
2025年 | 7篇 |
2024年 | 116篇 |
2023年 | 124篇 |
2022年 | 234篇 |
2021年 | 301篇 |
2020年 | 212篇 |
2019年 | 276篇 |
2018年 | 286篇 |
2017年 | 261篇 |
2016年 | 311篇 |
2015年 | 242篇 |
2014年 | 335篇 |
2013年 | 262篇 |
2012年 | 292篇 |
2011年 | 300篇 |
2010年 | 305篇 |
2009年 | 274篇 |
2008年 | 278篇 |
2007年 | 251篇 |
2006年 | 228篇 |
2005年 | 193篇 |
2004年 | 146篇 |
2003年 | 182篇 |
2002年 | 154篇 |
2001年 | 133篇 |
2000年 | 164篇 |
1999年 | 192篇 |
1998年 | 196篇 |
1997年 | 172篇 |
1996年 | 155篇 |
1995年 | 170篇 |
1994年 | 135篇 |
1993年 | 138篇 |
1992年 | 95篇 |
1991年 | 57篇 |
1990年 | 52篇 |
1989年 | 52篇 |
1988年 | 47篇 |
1987年 | 44篇 |
1986年 | 28篇 |
1985年 | 17篇 |
1984年 | 12篇 |
1983年 | 9篇 |
1982年 | 9篇 |
1981年 | 6篇 |
1980年 | 6篇 |
1978年 | 3篇 |
1977年 | 4篇 |
1976年 | 1篇 |
1958年 | 4篇 |
排序方式: 共有7472条查询结果,搜索用时 15 毫秒
1.
Two approaches of generating pore networks of porous media are presented to capture the pore fabric. The first methodology extracted pore structure from a computer simulated packing of spheres. The modified Delaunay tessellation was used to describe the porous media, and modified Nelder–Mead method in conjunction with three pore‐merging algorithms was used to generate the pore size and coordination number distributions of the randomly packed spheres. The Biconical Abscissa Asymmetric CONcentric bond was used to describe the connection between two adjacent voids. This algorithm was validated by predicting pore structure of a cubic array of spheres of equal radius with known pore sizes, throat sizes and coordination number distributions. The predicted distributions of pore structure agreed well with the measured. Then, the algorithm was used to predict pore structure and permeability of randomly packed spherical particles, and predicted permeability values were compared with published experimental data. The results showed that the predicted permeability values were in good agreement with those measured, confirming the proposed algorithm can capture the main flow paths of packed beds. The second methodology generated an equivalent pore network of porous media, of which the centers of voids were located in a regular lattice with constant pore center distance. However, this network allowed for matching both main geometrical and topological characteristics of the porous media. A comparison of the two approaches suggested that the second approach can also be used as a predictive tool to quantitatively study the microscopic properties of flow through porous media. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
毛乌素沙区沙漠化土地防治区划 总被引:1,自引:4,他引:1
毛乌素沙区在自然条件、沙漠化程度和变化趋势及产业经济发展特征等方面具有明显的空间异质性,合理地进行区域沙漠化土地防治区划是因地制宜开展土地沙漠化防治工作的重要基础。选取自然条件、沙漠化发展过程及人类活动等方面12个指标,将毛乌素沙区划分为黄土高原与鄂尔多斯高原过渡区、毛乌素沙地腹地典型草原区和西鄂尔多斯荒漠草原区3个区、7个亚区、12个小区。在区域可持续发展战略的实施过程中,要根据亚区和小区的特点有针对性地进行沙漠化土地的防治,充分利用区域资源优势,优化产业结构,确保经济效益、社会效益和生态效益的稳步提升。 相似文献
3.
We compare the moment of inertia (MOI) of a simple hydrostatic, two layer body as determined by the Radau–Darwin Approximation (RDA) to its exact hydrostatic MOI calculated to first order in the parameter q = Ω2R3/GM, where Ω, R, and M are the spin angular velocity, radius, and mass of the body, and G is the gravitational constant. We show that the RDA is in error by less than 1% for many configurations of core sizes and layer densities congruent with those of solid bodies in the Solar System. We then determine the error in the MOI of icy satellites calculated with the RDA due to nonhydrostatic effects by using a simple model in which the core and outer shell have slight degree 2 distortions away from their expected hydrostatic shapes. Since the hydrostatic shape has an associated stress of order ρΩ2R2 (where ρ is density) it follows that the importance of nonhydrostatic effects scales with the dimensionless number σ/ρΩ2R2, where σ is the nonhydrostatic stress. This highlights the likely importance of this error for slowly rotating bodies (e.g., Titan and Callisto) and small bodies (e.g., Saturn moons other than Titan). We apply this model to Titan, Callisto, and Enceladus and find that the RDA-derived MOI can be 10% greater than the actual MOI for nonhydrostatic stresses as small as ∼0.1 bars at the surface or ∼1 bar at the core–mantle boundary, but the actual nonhydrostatic stresses for a given shape change depends on the specifics of the interior model. When we apply this model to Ganymede we find that the stresses necessary to produce the same MOI errors as on Titan, Callisto, and Enceladus are an order of magnitude greater due to its faster rotation, so Ganymede may be the only instance where RDA is reliable. We argue that if satellites can reorient to the lowest energy state then RDA will always give an overestimate of the true MOI. Observations have shown that small nonhydrostatic gravity anomalies exist on Ganymede and Titan, at least at degree 3 and presumably higher. If these anomalies are indicative of the nonhydrostatic anomalies at degree 2 then these imply only a small correction to the MOI, even for Titan, but it is possible that the physical origin of nonhydrostatic degree 2 effects is different from the higher order terms. We conclude that nonhydrostatic effects could be present to an extent that allows Callisto and Titan to be fully differentiated. 相似文献
4.
Silicon limitation on primary production and its destiny in Jiaozhou Bay, China——Ⅳ:Study on cross-bay transect from estuary to ocean 总被引:1,自引:0,他引:1
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12
seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay.
The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration
there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the
silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and
deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly
be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical
processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus
silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting
certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the
silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided
into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions,
so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary
production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate.
Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon
depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages
in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the
river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production.
These results proved further that nutrient silicon is a limiting factor for phytoplankton growth.
This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic
Administration. 相似文献
5.
北祁连山东部早石炭世早期经历了一次完整的海水进退旋回。此期该区腕足动物的演化明显受控于相对海平面变化。生存环境的稳定性似乎是群落演替过程能否持久进行的基础。在影响生物群落演替的诸多因素中,底质性质及其稳定性最为重要,其次是食物供应、海水盐度和水动力强度等。各群落在时间上相互取代的主要控制因素是海水深度,与海平面的变化直接相关。而造成这一时期腕足动物群落横向变化的主要因素除了海水深度外,陆源碎屑供应量、海水循环性以及含盐度都具有十分重要的影响。本区早石炭世早期腕足动物群落的生态位介于BA1和BA2之间,缺乏BA3-BA5较深水群落(BA-Benthic Assemblage,底栖组合),说明此期该区早石炭世早期海水深度一般不超过10米。受沉积古地理环境的制约,本区早石炭世早期BA2生态域的主要分布范围局限于东部的景泰一带,向西水体明显变浅。 相似文献
6.
7.
Construction and progress of Chinese terrestrial ecosystem carbon,nitrogen and water fluxes coordinated observation 总被引:1,自引:0,他引:1
Guirui Yu Wei Ren Zhi Chen Leiming Zhang Qiufeng Wang Xuefa Wen Nianpeng He Li Zhang Huajun Fang Xianjin Zhu Yang Gao Xiaomin Sun 《地理学报(英文版)》2016,26(7):803-826
Eddy Covariance technique (EC) achieves the direct measurement on ecosystem carbon, nitrogen and water fluxes, and it provides scientific data for accurately assessing ecosystem functions in mitigating global climate change. This paper briefly reviewed the construction and development of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX), and systematically introduced the design principle and technology of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation system of ChinaFLUX. In addition, this paper summarized the main progress of ChinaFLUX in the ecosystem carbon, nitrogen and water exchange and environmental controlling mechanisms, the spatial pattern of carbon, nitrogen and water fluxes and biogeographical mechanisms, and the regional terrestrial ecosystem carbon budget assessment. Finally, the prospects and emphases of the terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation of ChinaFLUX are put forward to provide theoretical references for the development of flux observation and research in China. 相似文献
8.
9.
三角网格模型剖分方法的研究与应用 总被引:1,自引:0,他引:1
数值波场正演在地震学和勘探地球物理学领域正得到越来越广泛的应用,用一个好的方法来建立一个复杂的地质模型则显得尤为关键。三角网格模型相对于层状模型和矩形网格模型在反映地质界面形态、三角网格剖分个数调节及射线追踪速度等方面具有明显优势。利用三角网格剖分的建模方法,在VC2008编程环境下实现了复杂地质模型的描述。通过对复杂模型的建模测试,表明采用三角网格剖分方法,可解决以下模型难题:①对复杂模型界面的描述;②对复杂逆断层的描述;③对封闭块体的描述;④对模型弹性参数进行描述。 相似文献
10.
分别构建广州主建成区垂直比例尺为1﹕2 000、1﹕1 000和1﹕500的3个建筑物模型,利用大型边界层风洞,在西北和东南两风向下,基于中性流模拟分析了复杂城市地形下湍流度随高度的变化及其对宏观地形的依赖。结果表明:风廓线指数α与不同高度的湍流度之间的关系密切,利用现有模型,根据4类粗糙度边界层和不同垂直比例尺,可确定相应的湍流度随高度变化模型的主要系数,预测精度高。城市地形下最大湍流度面发育在0~0.2 h之间狭窄的范围内。用湍流度形态指数β来表征湍流度随高度的变化,无论城市屋脊还是平坦地形,随着风程区的延伸,廓线的指数α升高,湍流度形态指数β降低。表明同一高度湍流度值具有由迎风区、丘顶区向背风区增高,沿风程逐渐增大的规律,对地形部位和风程的依赖性强,与来流翻越简单地形时的特征一致。 相似文献