首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9254篇
  免费   1691篇
  国内免费   2213篇
测绘学   485篇
大气科学   1912篇
地球物理   2534篇
地质学   4634篇
海洋学   920篇
天文学   515篇
综合类   943篇
自然地理   1215篇
  2024年   39篇
  2023年   129篇
  2022年   407篇
  2021年   452篇
  2020年   386篇
  2019年   493篇
  2018年   536篇
  2017年   476篇
  2016年   561篇
  2015年   458篇
  2014年   570篇
  2013年   520篇
  2012年   495篇
  2011年   572篇
  2010年   543篇
  2009年   506篇
  2008年   468篇
  2007年   478篇
  2006年   366篇
  2005年   300篇
  2004年   287篇
  2003年   284篇
  2002年   292篇
  2001年   261篇
  2000年   304篇
  1999年   391篇
  1998年   330篇
  1997年   342篇
  1996年   279篇
  1995年   246篇
  1994年   289篇
  1993年   219篇
  1992年   168篇
  1991年   129篇
  1990年   105篇
  1989年   77篇
  1988年   99篇
  1987年   52篇
  1986年   45篇
  1985年   40篇
  1984年   35篇
  1983年   32篇
  1982年   36篇
  1981年   27篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1975年   2篇
  1958年   7篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
261.
262.
263.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
264.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
265.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
266.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
267.
268.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
269.
The use of the asymptotic limit can greatly simplify the theoretical analysis of chemical dissolution front instabilities in fluid‐saturated rocks and therefore make it possible to obtain mathematical solutions, which often play a crucial role in understanding the propagation behavior of chemical dissolution fronts in chemical dissolution systems. However, there has been a debate in recent years that the asymptotic limit of the acid dissolution capacity (i.e., the acid dissolution capacity number approaching zero) alone cannot lead to a sharp dissolution front of the Stefan type in the acidization dissolution system, in which the dissolvable minerals of carbonate rocks are chemically dissolved by the injected acid flow. The acid dissolution capacity number is commonly defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid. In this paper, we use four different proof methods, including (i) direct use of the fundamental concepts; (ii) use of the mathematical governing equations of an acidization dissolution system; (iii) use of the different time scaling approach; and (iv) use of a moving coordinate system approach, to demonstrate that the asymptotic limit of the acid dissolution capacity can indeed lead to sharp dissolution fronts of the Stefan type in acidization dissolution systems on a much larger time scale (than the dissolution time scale). Our new finding is that on the reaction time scale, the condition of the conventional time derivative of porosity approaching zero alone can ensure that the acidization dissolution front has a sharp shape of the Stefan type. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
270.
A key to understanding Late Pleistocene megafaunal extinction dynamics is knowledge of megafaunal ecological response(s) to long-term environmental perturbations. Strategically, that requires targeting fossil deposits that accumulated during glacial and interglacial intervals both before and after human arrival, with subsequent palaeoecological models underpinned by robust and reliable chronologies. Late Pleistocene vertebrate fossil localities from the Darling Downs, eastern Australia, provide stratigraphically-intact, abundant megafaunal sequences, which allows for testing of anthropogenic versus climate change megafauna extinction hypotheses. Each stratigraphic unit at site QML796, Kings Creek Catchment, was previously shown to have had similar sampling potential, and the basal units contain both small-sized taxa (e.g., land snails, frogs, bandicoots, rodents) and megafauna. Importantly, sequential faunal horizons show stepwise decrease in taxonomic diversity with the loss of some, but not all, megafauna in the geographically-small palaeocatchment. The purpose of this paper is to present the results of our intensive, multidisciplinary dating study of the deposits (>40 dates). Dating by means of accelerator mass spectrometry (AMS) 14C (targeting bone, freshwater molluscs, and charcoal) and thermal ionisation mass spectrometry U/Th (targeting teeth and freshwater molluscs) do not agree with each other and, in the case of AMS 14C dating, lack internal consistency. Scanning electron microscopy and rare earth element analyses demonstrate that the dated molluscs are diagenetically altered and contain aragonite cements that incorporated secondary young C, suggesting that such dates should be regarded as minimum ages. AMS 14C dated charcoals provide ages that occur out of stratigraphic order, and cluster in the upper chronological limits of the technique (~40–48 ka). Again, we suggest that such results should be regarded as suspicious and only minimum ages. Subsequent OSL and U/Th (teeth) dating provide complimentary results and demonstrate that the faunal sequences actually span ~120–83 ka, thus occurring beyond the AMS 14C dating window. Importantly, the dates suggest that the local decline in biological diversity was initiated ~75,000 years before the colonisation of humans on the continent. Collectively, the data are most parsimoniously consistent with a pre-human climate change model for local habitat change and megafauna extinction, but not with a nearly simultaneous extinction of megafauna as required by the human-induced blitzkrieg extinction hypothesis. This study demonstrates the problems inherent in dating deposits that lie near the chronological limits of the radiocarbon dating technique, and highlights the need to cross-check previously-dated archaeological and megafauna deposits within the timeframe of earliest human colonisation and latest megafaunal survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号