首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   5篇
  国内免费   2篇
测绘学   15篇
大气科学   5篇
地球物理   22篇
地质学   53篇
海洋学   14篇
天文学   9篇
自然地理   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   10篇
  2017年   11篇
  2016年   6篇
  2015年   1篇
  2014年   6篇
  2013年   18篇
  2012年   3篇
  2011年   1篇
  2010年   10篇
  2009年   11篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
21.
22.
Lidar (laser scanning) technology has been proven as a prominent technique for the acquisition of high-density and accurate topographic information. Because of systematic errors in the lidar measurements (drifts in the position and orientation information and biases in the mirror angles and ranges) and/or in the parameters relating the system components (mounting parameters), adjacent lidar strips may exhibit discrepancies. Although position and orientation drifts can have a more significant impact, these errors and their impact do not come as a surprise if the quality of the GPS/INS integration process is carefully examined. Therefore, the mounting errors are singled out in this work. The ideal solution for improving the compatibility of neighbouring strips in the presence of errors in the mounting parameters is the implementation of a rigorous calibration procedure. However, such a calibration requires the original observations, which may not be usually available. In this paper, a strip adjustment procedure to improve the compatibility between parallel lidar strips with moderate flight dynamics (for example, acquired by a fixed-wing aircraft) over an area with moderately varying elevation is proposed. The proposed method is similar to the photogrammetric block adjustment of independent models. Instead of point features, planar patches and linear features, which are represented by sets of non-conjugate points, are used for the strip adjustment. The feasibility and the performance of the proposed procedure together with its impact on subsequent activities are illustrated using experimental results from real data.  相似文献   
23.
In Sidi Bouzid plain, rainfall alone is insufficient to satisfy crop water requirements. Within this framework, and in order to improve water resources in the region, the Tunisian State adopted non-conventional water mobilization techniques, among which artificial spate irrigation. The objective of the study is to evaluate the impact of spate irrigation of flood water on the mitigation of agricultural drought and the enhancement of groundwater recharge. Annual and monthly rainfall data as well as flood water volumes were monitored. The study focused on the groundwater drawdown monitoring. Results showed a high flood water contribution to crop water requirements that exceeded rainfall. This water prevented drought in the spate perimeters. The groundwater drawdown was found to fluctuate over time, with an average decreasing rate of 0.4 to 0.5 m/year. Groundwater recharge was found to be highly correlated with flood water contribution through spate irrigation (R 2 = 84 %). Out of the spate zone, a high decrease in the groundwater level was noted. The lowest rate of 1 m/year was that of the farthest piezometer from the spate perimeters. This is influenced by the excessive pumping out of the spate zone. In 1980, groundwater flew from the west to the east. In 2015, the flow movement from the east to the center of the plain did not change due to the presence of the spate perimeters. Nevertheless, excessive pumping around sabkhas changed the flow directions at the outlet zone. A variation in groundwater salinity was observed in both space and time. In 1975, salinity was very low. The outlet zone was the most affected where the drawdown reached several meters, causing saltwater intrusion from the surrounding sabkhas.  相似文献   
24.
Many researchers seek to take advantage of the recently available and virtually uninterrupted supply of satellite-based rainfall information as an alternative and supplement to the ground-based observations in order to implement a cost-effective flood prediction in many under-gauged regions around the world. Recently, NASA Applied Science Program has partnered with USAID and African-RCMRD to implement an operational water-hazard warning system, SERVIR-Africa. The ultimate goal of the project is to build up disaster management capacity in East Africa by providing local governmental officials and international aid organizations a practical decision-support tool in order to better assess emerging flood impacts and to quantify spatial extent of flood risk, as well as to respond to such flood emergencies more expediently. The objective of this article is to evaluate the applicability of integrating NASA’s standard satellite precipitation product with a flood prediction model for disaster management in Nzoia, sub-basin of Lake Victoria, Africa. This research first evaluated the TMPA real-time rainfall data against gauged rainfall data from the year 2002 through 2006. Then, the gridded Xinanjiang Model was calibrated to Nzoia basin for period of 1985–2006. Benchmark streamflow simulations were produced with the calibrated hydrological model using the rain gauge and observed streamflow data. Afterward, continuous discharge predictions forced by TMPA 3B42RT real-time data from 2002 through 2006 were simulated, and acceptable results were obtained in comparison with the benchmark performance according to the designated statistic indices such as bias ratio (20%) and NSCE (0.67). Moreover, it is identified that the flood prediction results were improved with systematically bias-corrected TMPA rainfall data with less bias (3.6%) and higher NSCE (0.71). Although the results justify to suggest to us that TMPA real-time data can be acceptably used to drive hydrological models for flood prediction purpose in Nzoia basin, continuous progress in space-borne rainfall estimation technology toward higher accuracy and higher spatial resolution is highly appreciated. Finally, it is also highly recommended that to increase flood forecasting lead time, more reliable and more accurate short- or medium-range quantitative precipitation forecasts is a must.  相似文献   
25.
We studied the seasonal distribution of the ciliate community coupled with environmental factors along the coast at three stations sampled (from March 2006 to February 2007) in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). A total of 56 species belonging to 11 orders, were identified. Harbor of Gabes station was more diversified (45 species) than both Tabia (26 species) and Karboub (31 species) stations. The ciliate assemblage was numerically dominated by Spirotrichea in Tabia (82% of the total abundance), in the Harbor of Gabes (86% of the total abundance), whereas, in Karboub, Spirotrichea represented only 40% of the total abundance. The unexpected lower quantitative importance of Spirotrichea in Karboub station was apparently the result of the high salt concentration found in water samples throughout the study, probably originating from the saline area surrounding Karboub station, known as Sabkha. The distribution of species in the nearshore of the Gulf of Gabes seemed most likely influenced by the combined effects of temperature, salinity and hydrographic conditions.  相似文献   
26.
We assess the effects of prospective climate change until 2100 on water management of two major reservoirs of Iran, namely, Dez (3.34 × 109 m3) and Alavian (6 × 107 m3). We tune the Poly‐Hydro model suited for simulation of hydrological cycle in high altitude snow‐fed catchments. We assess optimal operation rules (ORs) for the reservoirs using three algorithms under dynamic and static operation and linear and non‐linear decision rules during control run (1990–2010 for Dez and 2000–2010 for Alavian). We use projected climate scenarios (plus statistical downscaling) from three general circulation models, EC‐Earth, CCSM4, and ECHAM6, and three emission scenarios, or representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, for a grand total of nine scenarios, to mimic evolution of the hydrological cycle under future climate until 2100. We subsequently test the ORs under the future hydrological scenarios (at half century and end of century) and the need for reoptimization. Poly‐Hydro model when benchmarked against historical data well mimics the hydrological budget of both catchments, including the main processes of evapotranspiration and streamflows. Teaching–learning‐based optimization delivers the best performance in both reservoirs according to objective scores and is used for future operation. Our projections in Dez catchment depict decreased precipitation along the XXI century, with ?1% on average (of the nine scenarios) at half century and ?6% at the end of century, with changes in streamflows on average ?7% yearly and ?13% yearly, respectively. In Alavian, precipitation would decrease by ?10% on average at half century and ?13% at the end of century, with streamflows ?14% yearly and ?18% yearly, respectively. Under the projected future hydrology, reservoirs' operation would provide lower performance (i.e., larger lack of water) than now, especially for Alavian dam. Our results provide evidence of potentially decreasing water availability and less effective water management in water stressed areas like Northern Iran here during this century.  相似文献   
27.
The cereal soils of the Northwest of Tunisia derive most of the time, from alluvial deposits or altered remains of carbonated and clayey rocks. Extraction of the clayey fraction permitted to reveal the presence of the following clayey minerals: kaolinite, illite, smectite, chlorite, as well as an illite–smectite interstratified layer, which is present in the deep horizons of the vertisol and in the isohumic soil. The presence of such types of clays shows that the evolution mechanism of soils is weathering of primary minerals inherited from the sedimentary rocks of the Northwest of Tunisia. These clays ensure to soils most of their cationic exchange capacity. Thanks to these clays, which have Ca++, Mg++ and K+ as exchangeable cations, the chemical fertility of these soils is ensured. It may be improved by increasing contents of organic matter, which is naturally few abundant in these soils. To cite this article: H. Ben Hassine, C. R. Geoscience 338 (2006).  相似文献   
28.
Spatial analysis of monthly precipitation in Turkey   总被引:1,自引:1,他引:1  
Summary  The principal objectives of this paper are to develop and validate an optimum interpolation method for the spatial analysis of monthly precipitation in Turkey. A two-dimensional optimum interpolation objective analysis scheme has been developed for the spatial analysis of precipitation. The model is developed for generating statistically optimum interpolation based on the irregular distribution of meteorological stations. One question that affects the optimum interpolation method and, indeed, all such techniques, is how many observations should be allowed to influence a given grid point? The method developed in this paper addresses this question. For the implementation of the method, 52 stations are considered for Turkey, with 30 years of monthly data at each point. It is observed that each monthly average spatial correlation function shows a monotonically decreasing pattern based on 15 km interval averages. The method provides high estimation accuracy in dense station locations such as in northwestern Turkey. Precipitation contour maps obtained by the optimum interpolation method indicate two spatial trends over Turkey which have not been identified in any previous study. Received June 24, 1999/Revised April 26, 2000  相似文献   
29.
A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length. The novel strategy is utilized in offshore areas instead of a single flow line. In this regard, there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current. Hence, this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests. Accordingly, at the first phase of the research, a single pipe was established and tested in laboratory to compare the results with those of an empirical equation. After finishing experimental verifications,piggyback pipelines were also assembled to study the scouring under steady current conditions. It was concluded that by increasing the gap distance between the pipes, the maximum scour depth decreases; however, an increase in the small pipe's diameter results in a larger maximum scour depth. Secondly, numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study.Finally, the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.  相似文献   
30.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号