排序方式: 共有56条查询结果,搜索用时 39 毫秒
11.
Jutta ZIPFEL Bradley L. JOLLIFF Ralf GELLERT Kenneth E. HERKENHOFF Rudolf RIEDER Robert ANDERSON James F. BELL III Johannes BRÜCKNER Joy A. CRISP Philip R. CHRISTENSEN Benton C. CLARK Paulo A.
De SOUZA Jr. Gerlind DREIBUS Claude
D’USTON Thanasis ECONOMOU Steven P. GOREVAN Brian C. HAHN Göstar KLINGELHÖFER Timothy J. McCOY Harry Y. McSWEEN Jr. Douglas W. MING Richard V. MORRIS Daniel S. RODIONOV Steven W. SQUYRES Heinrich WÄNKE Shawn P. WRIGHT Michael B. WYATT Albert S. YEN 《Meteoritics & planetary science》2011,46(1):1-20
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars. 相似文献
12.
Nele MUTTIK Kalle KIRSIMÄE Peeter Somelar Gordon R. Osinski 《Meteoritics & planetary science》2008,43(11):1827-1840
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering. 相似文献
13.
14.
STEPHAN GRUBER MARKUS EGLI ISABELLE GÄRTNER‐ROER MARTIN HOELZLE 《Geografiska Annaler: Series A, Physical Geography》2012,94(2):177-182
Gruber, S., Egli, M., Gärtner‐Roer, I. and Hoelzle, M., 2012. Preface: The mountain cryosphere – a holistic view on processes and their interactions. Geografiska Annaler: Series A, Physical Geography, ??, ??–??. doi :10.1111/j.1468‐0459.2012.00468.x 相似文献
15.
Raimo Sutinen Paavo NÄrhi Maarit Middleton Pekka HÄnninen Mauri Timonen Marja‐Liisa Sutinen 《Boreas: An International Journal of Quaternary Research》2012,41(3):367-378
As a result of global changes, shifts of alpine tree lines towards higher elevations have been recorded, but the role of the spatial variability of the snowpack and zonal‐pattern soil‐nutrient regimes is poorly understood. Norway spruce (Picea abies (L.) Karst) is best suited to fertile soils, and hence we applied soil physical‐chemical and snow measurements and the age chronology of Norway spruce along an elevational gradient (380–557 m a.s.l.) to address a vertical soil zonality hypothesis on mafic Lommoltunturi fell in Finnish Lapland. With regard to increasing elevation, we found an increase in soil NTOT, CTOT and Al, but a decrease in soil Ca, Mg and Ca:Al ratio as well as in electrical conductivity (EC). In addition, the snowpack was significantly thicker in low‐elevation forest than in the tree line and open tundra. In the 1840s, spruce established on low‐elevation soils with a Ca:Al ratio of 2.2. Starting from the 1920s a significant shift of spruce occurred such that it took 60 years to expand the tree line by 55 m in elevation. The spruce tree line has advanced, and the age distribution indicates new colonization of spruce in closed forest up to tundra. The poor soil Ca:Al ratio of 0.02 on tundra apparently is a constraint for spruce. Spruce forest is young (<165 years), and hence we argue that spruce has expanded onto formerly tree‐free sites of this mafic fell. This paper demonstrates that vertical soil zonality is a potential driver for the diffuse tree line of Picea abies on mafic Fennoscandian fells. 相似文献
16.
MAIJA HEIKKILÄ HEIKKI SEPPÄ 《Boreas: An International Journal of Quaternary Research》2010,39(4):705-719
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region. 相似文献
17.
The Piceance Creek basin formed as a continental foreland basin ca 53 to 48 Ma in the early to middle Eocene. On a global basis, the basin contains one of the richest oil shale resources known, where the profundal oil shale deposits, kerogen‐rich mudstones (clay and carbonate), exist over most of the basin. Despite its economic importance, the evolution of the Piceance Creek basin is still somewhat unclear. Based on facies association analysis, depositional trends, and gamma ray and Fischer assay data, six evolutionary lake stages are recognized: (i) fresh lake; (ii) transitional lake; (iii) highly fluctuating lake; (iv) rising lake; (v) high lake; and (vi) closing lake. Lake stages are composed of depositional units and characterize large‐scale changes in sedimentological patterns, depositional trends and fluctuations in the oil shale richness related to changes in climate and tectonics. Lake stage evolution is also consistent with the global Eocene climate trend. Stage 1 formed prior to the Eocene climate optimum. At the beginning of the Eocene climate optimum, a saline‐restricted lake formed (Stage 2) and evolved into the highly fluctuating lake (Stage 3) indicating rapid climate changes during the peak of the Eocene climate optimum. This stage was followed by the rising and high lakes (Stages 4 and 5) after the climate optimum and during a change to a more humid climate. The closing of the lake (Stage 6) was caused by increased sand input from the north, indicating the influence of both tectonics and climate. Based on depositional trends and climate evolution, it is suggested that, during the arid climate, laterally heterogeneous highly cyclic depositional units dominate, whereas, during the humid climate, depositional units form laterally continuous sediments that can be traced over long distances. 相似文献
18.
NIELS RAMEIL ADRIAN IMMENHAUSER GEORG WARRLICH HEIKO HILLGÄRTNER HENK J. DROSTE 《Sedimentology》2010,57(3):883-911
Lithocodium aggregatum and Bacinella irregularis are now extinct, shallow marine life forms of unknown taxonomic origin. Forming part of the tropical platform biota during much of the Mesozoic, these organisms experienced bloom periods and temporarily replaced rudist–coral assemblages during parts of the Early Aptian. Within the limitations of time resolution, this ‘out‐of‐balance’ facies is coeval with the Oceanic Anoxic Event 1a‐related black shale deposition in oceanic basins but the triggering factors remain poorly understood. Here, a platform‐wide comparison of Lithocodium–Bacinella geobodies and morphotypes from the Sultanate of Oman is presented and placed in its environmental, bathymetric and physiographic context. Lithocodium–Bacinella geobodies reach from kilometre‐scale ‘superstructures’ to delicate centimetre‐sized growth forms. Clearly, scale matters and care must be taken when drawing conclusions based on spatially limited observational data. Whilst the factors that cause Lithocodium–Bacinella expansion should probably be considered in a global context, regional to local factors affected growth patterns in a more predictable manner. Here, the unresolved taxonomic relationship remains the main obstacle in any attempt to unravel the response of Lithocodium–Bacinella to specific or interlinked environmental parameters as different organisms respond differently to changing environment. Acknowledging these limitations, the following tentative patterns are observed: (i) Lithocodium–Bacinella tolerated a wide range of hydrodynamic levels and responded to differences in energy level or physiographic settings (margin, intrashelf basin, inner platform) by obtaining characteristic growth forms. (ii) Lithocodium–Bacinella favoured low‐sediment input but had the ability to react to higher sedimentation rates by enhanced upward growth; a feature perhaps pointing to a phototrophic metabolism. Circumstantial evidence for continuous growth within the upper‐sediment column is debated. (iii) The availability of accommodation space had a direct influence on the maximum size of geobodies formed. (iv) Fluctuating nutrient levels and sea water alkalinity may have affected the growth potential of Lithocodium–Bacinella. Understanding the relationship between Lithocodium–Bacinella morphogenesis on a wide range of scales and local environmental parameters allows for better prediction of the spatial distribution of reservoir properties and also results in an improved interpretation of palaeoenvironments. This study might represent a useful first step in this direction. 相似文献
19.
Marina A. IVANOVA Natalia N. KONONKOVA Alexander N. KROT Richard C. GREENWOOD Ian A. FRANCHI Alexander B. VERCHOVSKY Mario TRIELOFF Ekaterina V. KOROCHANTSEVA Franz BRANDSTÄTTER 《Meteoritics & planetary science》2008,43(5):915-940
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite. 相似文献
20.
Thomas KENKMANN Kai WÜNNEMANN Alexander DEUTSCH Michael H. POELCHAU Frank SCHÄFER Klaus THOMA 《Meteoritics & planetary science》2011,46(6):890-902
Abstract– Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter‐sized steel spheres. We utilized a 40 m two‐stage light‐gas gun to achieve impact velocities of up to 5.4 km s?1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process. 相似文献