首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9351篇
  免费   2279篇
  国内免费   3193篇
测绘学   1151篇
大气科学   1544篇
地球物理   2003篇
地质学   5804篇
海洋学   1782篇
天文学   218篇
综合类   863篇
自然地理   1458篇
  2024年   62篇
  2023年   214篇
  2022年   591篇
  2021年   641篇
  2020年   558篇
  2019年   675篇
  2018年   627篇
  2017年   556篇
  2016年   653篇
  2015年   603篇
  2014年   651篇
  2013年   709篇
  2012年   802篇
  2011年   738篇
  2010年   787篇
  2009年   764篇
  2008年   766篇
  2007年   658篇
  2006年   574篇
  2005年   473篇
  2004年   385篇
  2003年   296篇
  2002年   329篇
  2001年   288篇
  2000年   249篇
  1999年   227篇
  1998年   152篇
  1997年   132篇
  1996年   98篇
  1995年   98篇
  1994年   72篇
  1993年   81篇
  1992年   60篇
  1991年   41篇
  1990年   35篇
  1989年   36篇
  1988年   22篇
  1987年   25篇
  1986年   21篇
  1985年   8篇
  1984年   12篇
  1983年   14篇
  1982年   10篇
  1981年   2篇
  1980年   7篇
  1979年   8篇
  1975年   2篇
  1958年   2篇
  1957年   3篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
沁水盆地煤层气成藏主控因素与成藏模式分析   总被引:2,自引:0,他引:2  
沁水盆地石炭-二叠系煤层厚度大、分布稳定、演化程度高,具有良好的煤层气勘探潜力,是目前国内首个成功商业化开发的煤层气盆地。基于研究区已有地质成果,对影响沁水盆地煤层气富集成藏的主控地质因素与成藏模式进行分析,认为构造运动、水动力条件、煤层埋深、煤岩组成及热演化程度是控制沁水盆地煤层气成藏的主要地质因素,高镜质组含量、高热演化程度、弱水动力条件和较大的埋深是煤层气成藏的有利条件,向斜是煤层气富集成藏的有利部位。  相似文献   
952.
四川盆地南部地区广泛发育下古生界寒武系、志留系等多套海相页岩层,其中龙马溪组是该区页岩气勘探开发的重点目标层。根据钻井岩心资料,通过有机碳、热解、碳同位素、等温吸附等地球化学实验分析,对川南地区下志留统龙马溪组页岩的有机质特征及其对页岩含气量的影响进行了研究。结果表明,川南地区龙马溪组页岩有机碳含量较高(平均1.53%),有机质类型较好(Ⅰ型和Ⅱ1型),热演化程度高(Ro为1.94%~2.42%),且页岩含气量较高(平均1.85m3/t)。页岩有机质特征是影响页岩含气量的主要因素,有机质丰度、有机质类型和热演化程度三者共同决定了川南地区龙马溪组页岩的含气量。  相似文献   
953.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   
954.
Soil–water characteristics are necessary for water quality monitoring, solute migration and plant growth. Soil–water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. However, little information is available concerning the impacts of grazing exclusion management on soil–water characteristics. Here, the soil–water characteristics of grasslands, which were excluded grazing for 5 (GE5) and 15 years (GE15), were studied. The saturated hydraulic conductivity (K s), SWCC, particle composition, field capacity and some other indexes were determined. Results showed that the clay content and K s of grassland soil were higher for GE15 than GE5. For both treatments, in low suction condition (≤100 kPa), the water holding capacity of 0–10 cm soil was the best. Water holding capacity of topsoil decreased gradually with the increasing of suction, and it reached the strongest when the suction reached 600 kPa. In all soil water suction, the water holding capacity of subsoil was the weakest. The van Genuchten expression was applicable for most of the samples, except 20–30 cm of GE5 and 10–20 cm of GE15. Dual porosity equation was applicable for all the samples. The soil–water capability and soil structure of which was fenced for 15 years is superior to that of 5 years. This study suggests that the enclosure management improved the soil structure and soil–water capability.  相似文献   
955.
The Qinghai-Tibet Plateau is sensitive to climate change, with ecosystems that are important with respect to scientific research. Here high-throughput DNA pyrosequencing was used to assess bacterial diversity within different alpine grassland ecosystems of the Qinghai-Tibet Plateau, China. In total, 34,759 sequences were obtained for the three ecosystems––alpine cold swamp meadow (ASM), alpine cold meadow (AM), alpine sandy grassland (ASG), and 31 phyla and a small number of unclassified bacteria were detected. The bacterial community structures were different for each alpine grassland ecosystem. The Proteobacteria and Acidobacteria were the predominant phyla in all three ecosystems. Besides this, Actinobacteria and Chloroflexi were abundant in ASM, Bacteroidetes, Gemmatimonadetes and Verrucomicrobia were abundant in AM, and Actinobacteria were abundant in ASG. In addition, the functional bacterial genera also differed with each alpine grassland ecosystem. The ASM contained more nitrifying bacteria, methane-oxidizing bacteria and sulfur- and sulfate-reducing bacteria, whereas the ASG ecosystem contained more nitrogen-fixing bacteria. Pyrosequencing provided a greater insight into bacterial diversity within different alpine grassland ecosystems than previously possible, and gave key data for the involvement of bacteria in the protection of alpine grassland ecosystems of the Qinghai-Tibet Plateau, China.  相似文献   
956.
Riparian zones act as important buffer zones for non-point source pollution, thus improving the health of aquatic ecosystems. Previous research has shown that riparian zones play an important role, and that land use has an important effect, on phosphorus (P) retention. A spatial basin-scale approach for analyzing P retention and land use effects could be important in preventing pollution in riparian zones. In this study, a riparian phosphorus cycle model based on EcoHAT was generated with algorithms from soil moisture and heat models, simplified soil and plant phosphorus models, plant growth models, and universal soil loss equations. Based on remote sensing data, model performance was enhanced for spatial and temporal prediction of P retention in the riparian zone. A modified soil and plant P model was used to simulate the soil P cycle of a riparian zone in a temperate continental monsoon climate in northern China. A laboratory experiment and a field experiment were conducted to validate the P cycle model. High coefficients of determination (R 2) between simulated and observed values indicate that the model provides reliable results. P uptake variations were the same as the net primary productivity (NPP) trends, which were affected by soil temperature and moisture in the temperate continental monsoon climate. Beginning in June, the monthly content increased, with the maximum appearing in August, when the most precipitation and the highest temperatures occur. The spatial distribution of P uptake rates from March to September showed that areas near water frequently had relatively high values from May to August, which is contrary to results obtained in March, April, and September. The P uptake amounts for different land uses changed according to expectation. The average monthly P uptake rates for farmlands and grasslands were more than those for orchards and lowlands, which had moderate P uptake rates, followed by shrubs and forests. The spatial distribution of soil erosion demonstrated that the soil erosion came primarily from high-intensity agricultural land in the western and central areas, while the northern and eastern study regions, which were less affected by human activity, experienced relatively slight soil erosion. From the point of view of P pollution prevention, the spatial structure of riparian zones and the spatial distribution of land use around the Guanting reservoir are thus not favorable.  相似文献   
957.
Deterioration of grottoes induced by the negative impacts of the variable temperature and moisture conditions has been an important issue in the conservation of heritage sites in China. In this case study, the spatial distributions and varying patterns of moisture and temperature in the caves of Yungang Grottoes, China, were investigated. The relative air humidity was approximately 100 % in the deep zone of the unsaturated surrounding rocks of the grottoes where the temperature remained almost steady at around 9.4 °C. However, the indoor air temperature, relative humidity, and rock surface temperature in the caves varied significantly because of the active exchange of the air with the outside atmosphere. The condensation water appeared on cave walls in the summer when the dew point in the air was higher than the rock surface temperature. Preliminary assessments with a special collection device indicated that the thickness of the transient condensation water could reach 0.03–0.10 mm on the back wall of a cave. The occurrence of this condensation water is expected to worsen salt deterioration of the sculptures in the grottoes. As revealed by long-term observations, a wooden building in front of a cave can weaken the indoor air temperature fluctuation and reduce the condensation water, and consequently, prevent the negative effects of the microclimate for the sculptures.  相似文献   
958.
Airborne particulate samples (including dust storm period samples) were collected from the Putuo, Qingpu and Minhang districts of Shanghai city from October, 2009 to October, 2010, and also tracked the dust transporting pathways from NW (Northwest) to SE (Southeast) including the cities of Xi’an, Beijing, Zhengzhou and Nantong, as a means of sampling the dust storm particulate matter in the spring of 2010. After measuring the magnetic parameters and the concentrations of particles and heavy metals, their magnetic properties were analyzed to track the source locations of heavy metal pollution during dust storm events, and then combined for backward trajectory analysis. It was found that the slightly polluted dust particles carried many contaminants during dust storm periods when the dust palls were transported by winter monsoon winds from the NW desert region towards the SE. The contaminants were further increased by contributions of fine SP&SD grains derived from local automobile exhausts in Shanghai as well as being enriched also in Northern cities during non-dust storm periods. A significantly positive linear relation was found between the χlf and SIRM of loess and the storm dust, indicating a similar material source for these two kinds of samples. A higher χlf and SIRM in storm dust content compared to loess suggests that storm dust contains not only materials from natural sources, but also those from partly anthropogenic sources. Backward trajectory analysis indicates intuitively the source region of the Shanghai storm dust. These conclusions have important scientific significance for research on long-distance transportation of contaminants (such as heavy metals) adsorbed onto airborne particulate matter during dust storm events.  相似文献   
959.
紧密结合国家非常规能源勘探开发的重大战略,聚焦重庆涪陵页岩气勘查开发区环境地质调查工作,总结了研究区岩溶发育特征与分布规律,评价了涪陵页岩气开发区区域水资源量和地下水质量。在此基础上,收集分析国内外资料,梳理了页岩气勘查开发所引发的6类环境(地质)问题及勘查、钻井、压裂、开采、闭井等5个阶段需关注的地质环境问题或风险等,其中涪陵页岩气勘查开发区主要诱发水土污染、地质灾害和大气污染等环境(地质)问题; 基本识别了2种地下水污染模式、3种污染类型及可能的地下水污染风险途径; 初步确定了涪陵页岩气勘查开发区污染指示性特征因子,并形成了页岩气勘查开发区地质环境影响评价指标体系,可指导页岩气勘查开发的环境地质调查。该研究为页岩气国家新型清洁能源的绿色开发和开发区生态文明建设提供支撑。  相似文献   
960.
Studying the influence of shale gas exploration and development on groundwater environment is the basis of guiding water environment protection in the process of shale gas exploration and development. Groundwater environmental pollution is concealed, complex and persistent. Once it is difficult to control the pollution, the current commercial shale gas development zones in Sichuan Basin that are mostly located in karst areas and highly sensitive to groundwater will be vulnerable to the impact of shale gas exploration and development. Based on the hydrogeological conditions of shale gas exploration and development area and combined with engineering analysis of exploration and development, various risk pathways that may affect the groundwater environment during process of shale gas exploration, mining well construction, mining operations and other stages were identified in this paper. Some existing risk pathways were proved by verification of typical areas and should not be ignored. Based on the actual situation of typical areas, the countermeasures of groundwater environmental protection in the process of shale gas exploration and development in karst areas were discussed. It is believed that the ground-water environment can be better protected by strengthening administration, research and application of new technologies, precise design, hydrogeological conditions, and research and feedback of groundwater environmental protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号